Abstract
Cloud computing is widely used in all walks of life today. Massive amounts of medical graph data are being outsourced to cloud servers to reduce overhead. The untrustworthiness of cloud servers puts the sensitive information of outsourced graph data at risk. To eliminate this security risk, it is an effective method to encrypt sensitive data. The adjacent queries are frequently used and highly valuable in graph data operations, and the adjacency query supporting homoionym search will enlarge the query effect and improve the query function. When the medical graph data is encrypted and stored on the cloud server, the operation of the data becomes extremely difficult. In this article, we propose a scheme to implement the adjacency query supporting homoionym search in cloud computing (AQHS), which maintains search contents privacy. We use a stem extraction algorithm and the searchable encryption mechanism to build secure index, and then achieve the adjacency query. The security of our proposed scheme is verified by formal analysis, and the effectiveness of the scheme is verified by experimental analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sampe, J., Artigas, M.S., Vernik, G., et al.: Outsourcing data processing jobs with Lithops. IEEE Trans. Cloud Comput. 11(1), 1026–1037 (2023)
Li, J., Ye, H., et al.: Efficient and secure outsourcing of differentially private data publishing with multiple evaluators. IEEE Trans. Dependable Sec. Comput. 19(1), 109–121 (2022)
Ren, Y., Song, Z., Sun, S., et al.: Outsourcing lda-based face recognition to an untrusted cloud. IEEE Trans. Dependable Sec. Comput. 23(3), 2058–2070 (2023)
Liu, W., Wen, D., Wang, H., et al.: Skyline nearest neighbor search on multi-layer graphs. In: 2014 IEEE 35th International Conference on Data Engineering Workshops, pp. 259-265. IEEE, Piscataway, N.J., USA (2019)
Potamias, M., Bonchi, F., Gionis, A., et al.: K-nearest neighbors in uncertain graphs. Proc/ VLDB Endowment 3(1), 997–1008 (2010)
Wang, R., Yan, J., Yang, X., et al.: Combinatorial learning of robust deep graph matching: an embedding based approach. IEEE Trans. Pattern Anal. Mach. Intell. 45(6), 6984–7000 (2023)
Bazgan, C., Pontoizeau, T., Tuza, Z., et al.: Finding a potential community in networks. Theoret. Comput. Sci. 769, 32–42 (2019)
Ferrer-Cid, P., Barceló-Ordinas, J., García-Vidal, J., et al.: Volterra graph-based outlier detection for air pollution sensor networks. IEEE Trans. Netw. Sci. Eng. 9(4), 2759–2771 (2023)
Li, X., Ye, H., Li, T., et al.: Efficient and secure outsourcing of differentially private data publishing with multiple evaluators. IEEE Trans. Dependable Secure Comput. 19(1), 67–76 (2022)
Zhang, X., Zhao, J., Xu, C., et al.: DOPIV: post-quantum secure identity-based data outsourcing with public integrity verification in cloud storage. IEEE Trans. Serv. Comput. 15(1), 334–345 (2022)
Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: Proceeding: IEEE Symposium on Security and Privacy (S &P 2000), vol. 2000, pp. 44–55. IEEE: Los Alamitos, CA, USA (2000)
Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_30
Goh, E.J.: Secure indexes. In: Cryptology ePrint Archive, Report 2003/216 (2003)
Curtmola, R., Garay, J., Kamara, S., et al.: Searchable symmetric encryption: improved definitions and efficient constructions. In: Proceedings of the 13th ACM Conference on Computer and Communications Security (CCS 2006), pp. 79-88. ACM, Alexandria, VA, United States (2006)
Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 1249–1259. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69839-5_96
Cao, N., Wang, C., Li, M., et al.: Privacy-preserving multi-keyword ranked search over encrypted cloud data. In: IEEE Conference on Computer Communications (INFOCOM 2011), pp. 829-837. IEEE: Shanghai, China (2011)
Mei, Z., Yu, J., Zhang, C., et al.: Secure multi-dimensional data retrieval with access control and range query in the cloud. Inf. Syst. 122, 102343 (2024)
Wang, C., Ren, K., Yu, S., et al. Achieving usable and privacy-assured similarity search over outsourced cloud data. In: IEEE Conference on Computer Communications (INFOCOM 2012), pp. 451-459. IEEE: Orlando, FL, USA (2012)
Chase, M., Kamara, S., et al.: Structured encryption and controlled disclosure. structured encryption and controlled disclosure. Cryptol. Inform. Sec. 2010, 577-594 (2010)
Cao, N., Yang, Z., Wang, C., et al.: Privacy-preserving query over encrypted graph-structured data in cloud computing. In: Proceedings of the 2011 31st International Conference on Distributed Computing Systems (ICDCS 2011), pp. 393 - 402. IEEE, Los Alamitos, CA, USA (2011)
Shen, M., Ma, B., Zhu, L., et al.: Cloud-based approximate constrained shortest distance queries over encrypted graphs with privacy protection. IEEE Trans. Inf. Forensics Secur. 13, 940–953 (2018)
Ciucanu, R., Lafourcade, P.: \(\sf GOOSE\): a secure framework for graph outsourcing and SPARQL evaluation. In: Singhal, A., Vaidya, J. (eds.) DBSec 2020. LNCS, vol. 12122, pp. 347–366. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49669-2_20
Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/CRC (2007)
Singhal, A.: Modern information retrieval: a brief overview. Bull. IEEE Comput. Soc. Tech. Committee Data Eng. 24(4), 35–43 (2001)
Leskovec, J., Lang, K.J., Dasgupta, A., et al.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1), 29–123 (2009)
Klimt, B., Yang, Y.: Introducing the Enron corpus. In: First Conference on Email and Anti-Spam (CEAS 2004), pp. 1-2. Google, Microsoft, etc.: Mountain View, CA, USA (2004)
Acknowledgment
The authors gratefully acknowledge the editor and the reviewers’ comments and helpful suggestions. This research is supported in part by the National Nature Science Foundation of China (No. 62262033 and 62062045).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, H., Tian, Y., Wu, B., Shi, J. (2025). Privacy Preserving Adjacency Query Supporting Homoionym Search over Medical Graph Data in Cloud Computing. In: Wang, Y., Zhang, LJ. (eds) CLOUD Computing – CLOUD 2024. CLOUD 2024. Lecture Notes in Computer Science, vol 15423. Springer, Cham. https://doi.org/10.1007/978-3-031-77153-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-77153-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77152-1
Online ISBN: 978-3-031-77153-8
eBook Packages: Computer ScienceComputer Science (R0)