Skip to main content

Vision-Based Xylem Wetness Classification in Stem Water Potential Determination

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2024)

Abstract

Water is often overused in irrigation, making efficient management of it crucial. Precision Agriculture emphasizes tools like stem water potential (SWP) analysis for better plant status determination. However, such tools often require labor-intensive in-situ sampling. Automation and machine learning can streamline this process and enhance outcomes. This work focused on automating stem detection and xylem wetness classification using the Scholander Pressure Chamber, a widely used but demanding method for SWP measurement. The aim was to refine stem detection and develop computer-vision-based methods to better classify water emergence at the xylem. To this end, we collected and manually annotated video data, applying vision- and learning-based methods for detection and classification. Additionally, we explored data augmentation and fine-tuned parameters to identify the most effective models. The identified best-performing models for stem detection and xylem wetness classification were evaluated end-to-end over 20 SWP measurements. Learning-based stem detection via YOLOv8n combined with ResNet50-based classification achieved a Top-1 accuracy of 80.98%, making it the best-performing approach for xylem wetness classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In one instance we performed SWP measurements on two separate sessions. To keep the air compressor’s temperature within safe limits, a maximum of 30 leaves can be tested at each SWP measurement session. Hence, the rest 20 leaves were stored in a cool and dry place overnight, and measurements resumed 23 h post-excision. Images from the corresponding videos were used in stem detection; however, they were excluded from the xylem wetness classification as they were considerably drier.

  2. 2.

    We refer the reader to https://bit.ly/arcs_isvc24 for supplementary information.

  3. 3.

    https://opencv.org/.

  4. 4.

    https://doi.org/10.5281/zenodo.3908559.

  5. 5.

    https://github.com/ultralytics/ultralytics.

References

  1. Al Bashish, D., Braik, M., Bani-Ahmad, S.: A framework for detection and classification of plant leaf and stem diseases. In: International Conference on Signal and Image Processing, pp. 113–118. IEEE (2010)

    Google Scholar 

  2. Bonomelli, C., Arias, M.I., Celis, V., Venegas, D., Gil, P.M.: Effect of application of sulfuric and humic acid in the mitigation of root asphyxiation stress in potted avocado plants. Commun. Soil Sci. Plant Anal. 50(13), 1591–1603 (2019)

    Article  Google Scholar 

  3. Boyer, J.: Leaf water potentials measured with a pressure chamber. Plant Physiol. 42(1), 133–137 (1967)

    Article  MATH  Google Scholar 

  4. Chone, X., Van Leeuwen, C., Dubourdieu, D., Gaudillère, J.P.: Stem water potential is a sensitive indicator of grapevine water status. Ann. Bot. 87(4), 477–483 (2001)

    Article  Google Scholar 

  5. Dechemi, A., et al.: Robotic assessment of a crop’s need for watering: automating a time-consuming task to support sustainable agriculture. IEEE Robot. Autom. Mag. 30(4), 52–67 (2023)

    Article  Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  7. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  MATH  Google Scholar 

  8. Garcia-Pedrero, A., et al.: Xylem vessels segmentation through a deep learning approach: a first look. In: IEEE International Work Conference on Bioinspired Intelligence (IWOBI), pp. 1–9 (2018)

    Google Scholar 

  9. Garcia-Pedrero, A., et al.: Convolutional neural networks for segmenting xylem vessels in stained cross-sectional images. Neural Comput. Appl. 32, 17927–17939 (2020)

    Article  MATH  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Howard, A., et al.: Searching for MobileNetV3. In: IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  12. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)

  13. Levin, A.D.: Re-evaluating pressure chamber methods of water status determination in field-grown grapevine (vitis spp.). Agricult. Water Manag. 221, 422–429 (2019)

    Google Scholar 

  14. Li, D., et al.: Use of terrestrial laser scanning to obtain the stem diameters of Larix olgensis and construct compatible taper-volume equations. Trees 37(3), 749–760 (2023)

    Google Scholar 

  15. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  16. McCutchan, H., Shackel, K.: Stem-water potential as a sensitive indicator of water stress in prune trees (prunus domestica l. CV. French). J. Am. Soc. Hortic. Sci. 117(4), 607–611 (1992)

    Google Scholar 

  17. Michelakis, N., Vougioucalou, E., Clapaki, G.: Water use, wetted soil volume, root distribution and yield of avocado under drip irrigation. Agric. Water Manag. 24(2), 119–131 (1993)

    Article  Google Scholar 

  18. Mucchiani, C., Karydis, K.: Development of an automated and artificial intelligence assisted pressure chamber for stem water potential determination. Comput. Electron. Agricult. 222, 109016 (2024)

    Google Scholar 

  19. Mucchiani, C., Zaccaria, D., Karydis, K.: Assessing the potential of integrating automation and artificial intelligence across sample-destructive methods to determine plant water status: a review and score-based evaluation. Comput. Electron. Agricult. 224, 108992 (2024)

    Google Scholar 

  20. Muhammad, M., et al.: Soil salinity and drought tolerance: an evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress, 100319 (2023)

    Google Scholar 

  21. Nadezhdina, N.: Sap flow index as an indicator of plant water status. Tree Physiol. 19(13), 885–891 (1999)

    Article  MATH  Google Scholar 

  22. Ortuño, M., et al.: Relationships between climatic variables and sap flow, stem water potential and maximum daily trunk shrinkage in lemon trees. Plant Soil 279, 229–242 (2006)

    Article  Google Scholar 

  23. Oster, J.D., Wichelns, D.: Economic and agronomic strategies to achieve sustainable irrigation. Irrig. Sci. 22, 107–120 (2003)

    Article  MATH  Google Scholar 

  24. O’Mahony, N., et al.: Deep learning vs. traditional computer vision. In: Arai, K., Kapoor, S. (eds.) CVC 2019. AISC, vol. 943, pp. 128–144. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17795-9_10

    Chapter  MATH  Google Scholar 

  25. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  26. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  27. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  28. Shackel, K., et al.: Establishing a reference baseline for midday stem water potential in olive and its use for plant-based irrigation management. Front. Plant Sci. 12, 791711 (2021)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  30. Suter, B., Triolo, R., Pernet, D., Dai, Z., Van Leeuwen, C.: Modeling stem water potential by separating the effects of soil water availability and climatic conditions on water status in grapevine (vitis vinifera l.). Front. Plant Sci. 10, 1485 (2019)

    Google Scholar 

  31. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  32. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  33. Wei, C., Tyree, M., Bennink, J.: The transmission of gas pressure to xylem fluid pressure when plants are inside a pressure bomb. J. Exp. Bot. 51(343), 309–316 (2000)

    Article  MATH  Google Scholar 

  34. Wilson, D.R., Martinez, T.R.: The need for small learning rates on large problems. In: IJCNN 2001. International Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222), vol. 1, pp. 115–119. IEEE (2001)

    Google Scholar 

  35. Wu, S., Dabagh, R.A., Jacobsen, A.L., Holmlund, H.I., Scalzo, F.: Deep learning-based classification of plant xylem tissue from light micrographs. In: Bebis, G., et al. (eds.) ISVC 2022. LNCS, vol. 13598, pp. 237–248. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20713-6_18

  36. Yamane, T., Habaragamuwa, H., Sugiura, R., Takahashi, T., Hayama, H., Mitani, N.: Stem water potential estimation from images using a field noise-robust deep regression-based approach in peach trees. Sci. Rep. 13(1), 22359 (2023)

    Article  Google Scholar 

  37. Zapata-Sierra, A.J., Manzano-Agugliaro, F.: Controlled deficit irrigation for orange trees in Mediterranean countries. J. Clean. Prod. 162, 130–140 (2017)

    Google Scholar 

  38. Zhou, P., Feng, J., Ma, C., Xiong, C., Hoi, S.C.H., et al.: Towards theoretically understanding why SGD generalizes better than adam in deep learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21285–21296 (2020)

    Google Scholar 

  39. Zhuang, S., Wang, P., Jiang, B., Li, M., Gong, Z.: Early detection of water stress in maize based on digital images. Comput. Electron. Agric. 140, 461–468 (2017)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of NSF # CMMI-2326309, USDA-NIFA # 2021-67022-33453, and The University of California under grant UC-MRPI M21PR3417. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Karydis .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peiris, P., Samanta, A., Mucchiani, C., Simons, C., Roy-Chowdhury, A., Karydis, K. (2025). Vision-Based Xylem Wetness Classification in Stem Water Potential Determination. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2024. Lecture Notes in Computer Science, vol 15047. Springer, Cham. https://doi.org/10.1007/978-3-031-77389-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77389-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77388-4

  • Online ISBN: 978-3-031-77389-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics