Skip to main content

HCC: An Explainable Framework for Classifying Discomfort from Video

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15047))

Included in the following conference series:

  • 233 Accesses

Abstract

We present Human Comfort Classifier (HCC): A framework for classifying human discomfort from video. Recognizing comfort and discomfort in social interactions is something that many of us do without having to think about it. However, identifying discomfort in others can be a challenge for individuals with social skills deficits, who often become socially isolated. Social isolation can lead to many negative outcomes for individuals and is recognized by the CDC and WHO as a priority public health problem. In this work, we propose HCC to detect discomfort in videos. This can be utilized for training for individuals with social skills deficits. HCC utilizes a multi-modal approach of pose estimation, facial landmarks, and natural language processing to determine comfort in real time. We utilize an explainable rule-based model to categorize behavior and achieve approximately 78% prediction accuracy on an interview dataset.

W. Valentine and M. Webb—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aviezer, H., et al.: Angry, disgusted, or afraid? studies on the malleability of emotion perception. Psychol. Sci. 19(7), 724–732 (2008)

    Article  MATH  Google Scholar 

  2. Baker, J.: Key components of social skills training. Teaching Social Skills to People with Autism: Best Practices in Individualizing Interventions. Woodbine House, Inc., Bethesda, MD (2013)

    Google Scholar 

  3. Bazarevsky, V., Grishchenko, I., Raveendran, K., Zhu, T., Zhang, F., Grundmann, M.: Blazepose: On-device real-time body pose tracking. CoRR abs/ arXiv: 2006.10204 (2020). https://arxiv.org/abs/2006.10204

  4. Busso, C., et al.: Iemocap: interactive emotional dyadic motion capture database. Lang. Resour. Eval. 42, 335–359 (2008)

    Article  Google Scholar 

  5. CDC: Loneliness and social isolation linked to serious health conditions. Alzheimer’s Disease and Healthy Aging (2021)

    Google Scholar 

  6. Conger, J.C., Keane, S.P.: Social skills intervention in the treatment of isolated or withdrawn children. Psychol. Bull. 90(3), 478 (1981)

    Article  MATH  Google Scholar 

  7. De Boo, G.M., Prins, P.J.: Social incompetence in children with adhd: possible moderators and mediators in social-skills training. Clin. Psychol. Rev. 27(1), 78–97 (2007)

    Article  Google Scholar 

  8. De Silva, L.C., Miyasato, T., Nakatsu, R.: Facial emotion recognition using multi-modal information. In: Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat. vol. 1, pp. 397–401. IEEE (1997)

    Google Scholar 

  9. Dhall, A., Goecke, R., Lucey, S., Gedeon, T.: Static facial expression analysis in tough conditions: Data, evaluation protocol and benchmark. In: 2011 IEEE international conference on computer vision workshops (ICCV workshops), pp. 2106–2112. IEEE (2011)

    Google Scholar 

  10. Douglas-Cowie, E., Campbell, N., Cowie, R., Roach, P.: Emotional speech: towards a new generation of databases. Speech Commun. 40(1–2), 33–60 (2003)

    Article  MATH  Google Scholar 

  11. Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 17(2), 124 (1971)

    Article  MATH  Google Scholar 

  12. Gendron, M., Mesquita, B., Barrett, L.F.: 538539 emotion perception: putting the face in context. In: The Oxford Handbook of Cognitive Psychology. Oxford University Press (Mar 2013). https://doi.org/10.1093/oxfordhb/9780195376746.013.0034

  13. Hagopian, L.P., Kuhn, D.E., Strother, G.E., Van Houten, R.: Targeting social skills deficits in an adolescent with pervasive developmental disorder (2009)

    Google Scholar 

  14. Harrigan, J.A., O’Connell, D.M.: How do you look when feeling anxious? facial displays of anxiety. Personality Individ. Differ. 21(2), 205–212 (1996)

    Article  Google Scholar 

  15. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2004). https://api.semanticscholar.org/CorpusID:207155218

  16. Ilyas, C.M.A., Nunes, R., Nasrollahi, K., Rehm, M., Moeslund, T.B.: Deep emotion recognition through upper body movements and facial expression. In: VISIGRAPP (5: VISAPP), pp. 669–679 (2021)

    Google Scholar 

  17. Kadambi, A., Ichien, N., Qiu, S., Lu, H.: Understanding the visual perception of awkward body movements: how interactions go awry. Attention, Percept. Psychophys. 82(5), 2544–2557 (2020). https://doi.org/10.3758/s13414-019-01948-5

    Article  MATH  Google Scholar 

  18. Kartynnik, Y., Ablavatski, A., Grishchenko, I., Grundmann, M.: Real-time facial surface geometry from monocular video on mobile gpus (2019)

    Google Scholar 

  19. Kosti, R., Alvarez, J.M., Recasens, A., Lapedriza, A.: Context based emotion recognition using emotic dataset. IEEE Trans. Pattern Anal. Mach. Intell. 42(11), 2755–2766 (2019)

    Google Scholar 

  20. Koudenburg, N., Postmes, T., Gordijn, E.: Disrupting the flow: how brief silences in group conversations affect social needs. J. Exper. Soc. Psychol. 47, 512–515 (2011). https://doi.org/10.1016/j.jesp.2010.12.006

  21. Liberman, R.P.: Assessment of social skills. Schizophr. Bull. 8(1), 62 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lugaresi, C., et al.: Mediapipe: Aaframework for building perception pipelines. ArXiv abs/ arXiv: 9060.8172 (2019). https://api.semanticscholar.org/CorpusID:195069430

  23. Maenner, M.J., et al..: Prevalence and characteristics of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, united states, 2020. MMWR Surveillance Summaries 72(2) (2023)

    Google Scholar 

  24. Novotney, A.: The risks of social isolation. Monitor Psychol. 50(5), 32–37 (2019). https://www.apa.org/monitor/2019/05/ce-corner-isolation

  25. Pereira, R., et al.: Systematic review of emotion detection with computer vision and deep learning. Sensors 24(11) (2024). https://doi.org/10.3390/s24113484, https://www.mdpi.com/1424-8220/24/11/3484

  26. Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., Sutskever, I.: Robust speech recognition via large-scale weak supervision (2022)

    Google Scholar 

  27. Ranganathan, H., Chakraborty, S., Panchanathan, S.: Multimodal emotion recognition using deep learning architectures. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)

    Google Scholar 

  28. Segrin, C., Kinney, T.: Social skills deficits among the socially anxious: rejection from others and loneliness. Motiv. Emot. 19, 1–24 (1995)

    Article  Google Scholar 

  29. Stratton, D., Hand, E.: Bridging the gap between automated and human facial emotion perception. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2400–2410 (2022). https://doi.org/10.1109/CVPRW56347.2022.00268

  30. Templeton, E.M., Chang, L.J., Reynolds, E.A., Cone LeBeaumont, M.D., Wheatley, T.: Fast response times signal social connection in conversation. Proc. Natl. Acad. Sci. 119(4), e2116915119 (2022)

    Google Scholar 

  31. WHO: Social isolation and loneliness (2024)

    Google Scholar 

  32. Xue, J., Wang, J., Wu, X., Zhang, Q.: Affective video content analysis: Decade review and new perspectives (2024). https://arxiv.org/abs/2310.17212

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant #IIS-2150394. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Valentine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Âİ 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valentine, W., Webb, M., Collum, C., Feil-Seifer, D., Hand, E. (2025). HCC: An Explainable Framework for Classifying Discomfort from Video. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2024. Lecture Notes in Computer Science, vol 15047. Springer, Cham. https://doi.org/10.1007/978-3-031-77389-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77389-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77388-4

  • Online ISBN: 978-3-031-77389-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics