Abstract
Anomaly detection involves training an algorithm exclusively on nominal data with the aim of identifying anomalous data during inference. In current visual anomaly detection methods, algorithms typically generate heatmaps that indicate the likelihood of anomalous pixels. However, in practical applications, professionals such as doctors or engineers may need discrete, actionable information about the location and size of the anomaly. To our knowledge, we are the first to address this gap. Drawing inspiration from the object detection field, we propose parameterising discrete anomalies through aligned and oriented bounding boxes. We introduce the concept of Discrete Anomalous Regions (DAR), where anomaly detection algorithms predict these regions directly. We present a novel solution, YOLOcore, which combines a novel noise sampling scheme with the PatchCore algorithm and YOLOv8 architecture. To assess performance, we employ standard object detection metrics, AP\(^{25}\) and AP\(^{50}\). YOLOcore significantly outperforms traditional approaches such as gradient-based blob detection applied to anomaly heatmaps. We invite the community to advance this new direction of anomaly detection. Code can be found at https://github.com/alext1995/YOLOcore.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
MetaAI. Anomaly detection on mvtec ad. https://paperswithcode.com/sota/anomaly-detection-on-mvtec-ad. Accessed 15 May 2023
Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad - a comprehensive real-world dataset for unsupervised anomaly detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Taylor, A.D.J., Tregidgo, P., Morrison, J.J., Campbell, N.D.F.: VisionAD, a software package of performant anomaly detection algorithms, and proportion localised, an interpretable metric. Trans. Mach. Learn. Res. (2024)
Taylor, A.D.J., Tregidgo, P., Morrison, J.J., Campbell, N.D.F.: Advancing anomaly detection: the idw dataset and mc algorithm. In: 35th British Machine Vision Conference 2024, BMVC 2024, Glasgow, UK, November 25-28, 2024. BMVA (2024)
Akcay, S., Ameln, D., Vaidya, A., Lakshmanan, B., Ahuja, N., Genc, U.: A deep learning library for anomaly detection, Anomalib (2022)
Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. Proc. IEEE 111(3), 257–276 (2023)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001., p. 1:I–I (2001)
Zaidi, S.S.A., Ansari, M.S., Aslam, A., Kanwal, N., Asghar, M., Lee, B.: A survey of modern deep learning based object detection models. Digital Sig. Process. 126, 103514 (2022)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587. IEEE (2014)
Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. CoRR, abs/1506.02640 (2015)
Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)
Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint 10.48550/arXiv.2004.10934 (2020)
Li, C., et al.: Yolov6: a single-stage object detection framework for industrial applications. arXiv preprint 10.48550/arXiv.2209.02976 (2022)
Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)
Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLO, January 2023
Han, K.T.M., Uyyanonvara, B.: A survey of blob detection algorithms for biomedical images. In: 2016 7th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), pp. 57–60 (2016)
Marr, D., Hildreth, E.: Theory of edge detection. Proc. Roy. Soc. Lond. Ser. B. Biol. Sci. 207(1167), 187–217 (1980)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, 1150–1157 (1999)
Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)
Parvathi, S.S.L., Jonnadula, H.: A comprehensive survey on medical image blob detection and classification models. In: 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), pp. 1–6 (2021)
Hongming, X., Cheng, L., Berendt, R., Jha, N., Mandal, M.: Automatic nuclei detection based on generalized laplacian of gaussian filters. IEEE J. Biomed. Health Inform. 21(3), 826–837 (2017)
Zhang, M., Teresa, W., Bennett, K.: Small blob identification in medical images using regional features from optimum scale. IEEE Trans. Biomed. Eng. 62, 09 (2014)
Kim, D., et al.: An automated cell detection method for th-positive dopaminergic neurons in a mouse model of parkinson’s disease using convolutional neural networks. Exp. Neurobiol. 32(3), 181–194 (2023)
Chawla, R., et al.: A hybrid optimization approach with deep learning technique for the classification of dental caries. Int. J. Adv. Comput. Sci. Appl. 13. 2022 (2022)
Chawla, R., et al.: A hybrid optimization approach with deep learning technique for the classification of dental caries. Int. J. Adv. Comput. Sci. Appl. 13, 2022 (2022)
Dąbek, P., Szrek, J., Zimroz, R., Wodecki, J.: An automatic procedure for overheated idler detection in belt conveyors using fusion of infrared and rgb images acquired during ugv robot inspection. Energies (2022)
Sung, K., Peck, C., Majji, M., Junkins, J.L.: An optical navigation system for autonomous aerospace systems. IEEE Sens. J. 22(17), 16862–16873 (2022)
Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P.: Towards total recall in industrial anomaly detection. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14298–14308 (2022)
Bast. polygenerator (2021). https://github.com/bast/polygenerator. Accessed April 20, 2023
MetaAI. Real-time object detection on coco. https://paperswithcode.com/sota/real-time-object-detection-on-coco. Accessed on May 18, 2023
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Zou, Y., Jeong, J., Pemula, L., Zhang, D., Dabeer, O.: Spot-the-difference self-supervised pre-training for anomaly detection and segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, pp. 392–408. Springer, Cham (2022)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
D. J. Taylor, A., James Morrison, J., Tregidgo, P., D. F. Campbell, N. (2025). Discrete Anomalous Regions (DAR) - Going Beyond Heatmaps and Predicting Actionable Discrete Regions. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2024. Lecture Notes in Computer Science, vol 15047. Springer, Cham. https://doi.org/10.1007/978-3-031-77389-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-77389-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77388-4
Online ISBN: 978-3-031-77389-1
eBook Packages: Computer ScienceComputer Science (R0)