Skip to main content

Discrete Anomalous Regions (DAR) - Going Beyond Heatmaps and Predicting Actionable Discrete Regions

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2024)

Abstract

Anomaly detection involves training an algorithm exclusively on nominal data with the aim of identifying anomalous data during inference. In current visual anomaly detection methods, algorithms typically generate heatmaps that indicate the likelihood of anomalous pixels. However, in practical applications, professionals such as doctors or engineers may need discrete, actionable information about the location and size of the anomaly. To our knowledge, we are the first to address this gap. Drawing inspiration from the object detection field, we propose parameterising discrete anomalies through aligned and oriented bounding boxes. We introduce the concept of Discrete Anomalous Regions (DAR), where anomaly detection algorithms predict these regions directly. We present a novel solution, YOLOcore, which combines a novel noise sampling scheme with the PatchCore algorithm and YOLOv8 architecture. To assess performance, we employ standard object detection metrics, AP\(^{25}\) and AP\(^{50}\). YOLOcore significantly outperforms traditional approaches such as gradient-based blob detection applied to anomaly heatmaps. We invite the community to advance this new direction of anomaly detection. Code can be found at https://github.com/alext1995/YOLOcore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MetaAI. Anomaly detection on mvtec ad. https://paperswithcode.com/sota/anomaly-detection-on-mvtec-ad. Accessed 15 May 2023

  2. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Mvtec ad - a comprehensive real-world dataset for unsupervised anomaly detection. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  3. Taylor, A.D.J., Tregidgo, P., Morrison, J.J., Campbell, N.D.F.: VisionAD, a software package of performant anomaly detection algorithms, and proportion localised, an interpretable metric. Trans. Mach. Learn. Res. (2024)

    Google Scholar 

  4. Taylor, A.D.J., Tregidgo, P., Morrison, J.J., Campbell, N.D.F.: Advancing anomaly detection: the idw dataset and mc algorithm. In: 35th British Machine Vision Conference 2024, BMVC 2024, Glasgow, UK, November 25-28, 2024. BMVA (2024)

    Google Scholar 

  5. Akcay, S., Ameln, D., Vaidya, A., Lakshmanan, B., Ahuja, N., Genc, U.: A deep learning library for anomaly detection, Anomalib (2022)

    Google Scholar 

  6. Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. Proc. IEEE 111(3), 257–276 (2023)

    Article  MATH  Google Scholar 

  7. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001., p. 1:I–I (2001)

    Google Scholar 

  8. Zaidi, S.S.A., Ansari, M.S., Aslam, A., Kanwal, N., Asghar, M., Lee, B.: A survey of modern deep learning based object detection models. Digital Sig. Process. 126, 103514 (2022)

    Article  Google Scholar 

  9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587. IEEE (2014)

    Google Scholar 

  10. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. CoRR, abs/1506.02640 (2015)

    Google Scholar 

  11. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  12. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  13. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint 10.48550/arXiv.2004.10934 (2020)

    Google Scholar 

  14. Li, C., et al.: Yolov6: a single-stage object detection framework for industrial applications. arXiv preprint 10.48550/arXiv.2209.02976 (2022)

    Google Scholar 

  15. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

  16. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLO, January 2023

    Google Scholar 

  17. Han, K.T.M., Uyyanonvara, B.: A survey of blob detection algorithms for biomedical images. In: 2016 7th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), pp. 57–60 (2016)

    Google Scholar 

  18. Marr, D., Hildreth, E.: Theory of edge detection. Proc. Roy. Soc. Lond. Ser. B. Biol. Sci. 207(1167), 187–217 (1980)

    MATH  Google Scholar 

  19. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, 1150–1157 (1999)

    Google Scholar 

  20. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)

    Article  MATH  Google Scholar 

  21. Parvathi, S.S.L., Jonnadula, H.: A comprehensive survey on medical image blob detection and classification models. In: 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), pp. 1–6 (2021)

    Google Scholar 

  22. Hongming, X., Cheng, L., Berendt, R., Jha, N., Mandal, M.: Automatic nuclei detection based on generalized laplacian of gaussian filters. IEEE J. Biomed. Health Inform. 21(3), 826–837 (2017)

    Article  MATH  Google Scholar 

  23. Zhang, M., Teresa, W., Bennett, K.: Small blob identification in medical images using regional features from optimum scale. IEEE Trans. Biomed. Eng. 62, 09 (2014)

    Google Scholar 

  24. Kim, D., et al.: An automated cell detection method for th-positive dopaminergic neurons in a mouse model of parkinson’s disease using convolutional neural networks. Exp. Neurobiol. 32(3), 181–194 (2023)

    Article  MATH  Google Scholar 

  25. Chawla, R., et al.: A hybrid optimization approach with deep learning technique for the classification of dental caries. Int. J. Adv. Comput. Sci. Appl. 13. 2022 (2022)

    Google Scholar 

  26. Chawla, R., et al.: A hybrid optimization approach with deep learning technique for the classification of dental caries. Int. J. Adv. Comput. Sci. Appl. 13, 2022 (2022)

    MATH  Google Scholar 

  27. Dąbek, P., Szrek, J., Zimroz, R., Wodecki, J.: An automatic procedure for overheated idler detection in belt conveyors using fusion of infrared and rgb images acquired during ugv robot inspection. Energies (2022)

    Google Scholar 

  28. Sung, K., Peck, C., Majji, M., Junkins, J.L.: An optical navigation system for autonomous aerospace systems. IEEE Sens. J. 22(17), 16862–16873 (2022)

    Article  MATH  Google Scholar 

  29. Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P.: Towards total recall in industrial anomaly detection. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14298–14308 (2022)

    Google Scholar 

  30. Bast. polygenerator (2021). https://github.com/bast/polygenerator. Accessed April 20, 2023

  31. MetaAI. Real-time object detection on coco. https://paperswithcode.com/sota/real-time-object-detection-on-coco. Accessed on May 18, 2023

  32. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  33. Zou, Y., Jeong, J., Pemula, L., Zhang, D., Dabeer, O.: Spot-the-difference self-supervised pre-training for anomaly detection and segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, pp. 392–408. Springer, Cham (2022)

    Chapter  Google Scholar 

  34. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. J. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D. J. Taylor, A., James Morrison, J., Tregidgo, P., D. F. Campbell, N. (2025). Discrete Anomalous Regions (DAR) - Going Beyond Heatmaps and Predicting Actionable Discrete Regions. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2024. Lecture Notes in Computer Science, vol 15047. Springer, Cham. https://doi.org/10.1007/978-3-031-77389-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77389-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77388-4

  • Online ISBN: 978-3-031-77389-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics