Skip to main content

PIEPredict++: An Improved Pedestrian Intention Estimation Model Incorporating Comprehensive Environment Information

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15046))

Included in the following conference series:

  • 155 Accesses

Abstract

Predicting pedestrians’ highly variable crossing intentions has attracted considerable attention in autonomous driving research. This paper introduces PIEPredict++, a new model for predicting pedestrian intentions. It uses dynamic and static environmental features around pedestrians to infer intentions. To understand pedestrian behavior, we propose the EnvProcess module, incorporating the cross-attention mechanism to focus on key features in different environments. Evaluation of the publicly available pedestrian intention estimation dataset demonstrates that our model achieves exceptional results in terms of accuracy and F1 score. Our state-of-the-art performance in F1 score and recall is particularly noteworthy, underscoring the model’s exceptional ability to predict false-negative instances and its considerable implications for autonomous driving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/aras62/PIE.

References

  1. National Highway Traffic Safety Administration: Summary report: Standing general order on crash reporting for automated driving systems. U.S, Department of Transportation (2022)

    Google Scholar 

  2. Zhang, X., Angeloudis, P., Demiris, Y.: St crossingpose: a spatial-temporal graph convolutional network for skeleton-based pedestrian-crossing intention prediction. IEEE Trans. Intell. Transp. Syst. 23(11), 20773–20782 (2022)

    Article  MATH  Google Scholar 

  3. Rasouli, A., Kotseruba, I., Kunic, T., Tsotsos, J.K.: PIE: a large-scale dataset and models for pedestrian intention estimation and trajectory prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV), pp. 6261–6270 (2019)

    Google Scholar 

  4. Ma, J., Rong, W.: Pedestrian crossing intention prediction method based on multi-feature fusion. World Electr. Veh. J. 13(8), 158 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yang, D., Zhang, H., Yurtsever, E., Redmill, K.A., Ozgüner, U.: Predicting pedestrian crossing intention with feature fusion and spatio-temporal attention. IEEE Trans. Intell. Transp. Syst. 7(2), 221–230 (2022)

    Article  Google Scholar 

  6. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  7. Zhou, Y., Tan, G., Zhong, R., Li, Y., Gou, C.: PIT: Progressive interaction transformer for pedestrian crossing intention prediction. IEEE Trans. Intell. Transp. Syst. 24(12), 14213–14225 (2023)

    Article  MATH  Google Scholar 

  8. Zhang, Z., Tian, R., Ding, Z.: TREP: transformer-based evidential prediction for pedestrian intention with uncertainty, in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Washington, USA, pp. 3534–3542 (2023)

    Google Scholar 

  9. Fu, Z., Jiang, K., Xie, C., Xu, Y., Huang, J., Yang, D.: Summary and reflections on pedestrian trajectory prediction in the field of autonomous driving. IEEE Trans. Intell. Veh., 1–33 (2024)

    Google Scholar 

  10. Uhlemann, N., Fent, F., Lienkamp, M.: Evaluating pedestrian trajectory prediction methods with respect to autonomous driving. IEEE Trans. Intell. Transp. Syst., 1–10 (2024)

    Google Scholar 

  11. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks, CoRR, vol. 28 (2015)

    Google Scholar 

  12. Zhou, J., Bai, X., Fu, W., Ning, B., Li, R.: Pedestrian intention estimation and trajectory prediction based on data and knowledge-driven method. IET Intell. Transp. Syst. 18(2), 315–331 (2023)

    Article  MATH  Google Scholar 

  13. Yang, B., Zhu, J., Hu, C., Yu, Z., Hu, H., Ni, R.: Faster pedestrian crossing intention prediction based on efficient fusion of diverse intention influencing factors. IEEE Trans. Transp. Electrific., 1 (2024)

    Google Scholar 

  14. Ham, J.S., Kim, D.H., Jung, N., Moon,J.: CIPF: crossing intention prediction network based on feature fusion modules for improving pedestrian safety. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPRW), Vancouver, BC, Canada, pp. 3666–3675 (2023)

    Google Scholar 

  15. Rasouli, A., Rohani, M., Luo, J.: Bifold and semantic reasoning for pedestrian behavior prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, pp. 15600–15610 (2021)

    Google Scholar 

  16. Chen, T., Tian, R., Ding, Z.: Visual reasoning using graph convolutional networks for predicting pedestrian crossing intention. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 3096–3102 (2021)

    Google Scholar 

  17. Lorenzo, J., Parra, I., Sotelo, M.A.: IntFormer: Predicting pedestrian intention with the aid of the Transformer architecture, arXiv preprint arXiv:2105.08647 (2021)

  18. Bhattacharjee, A., Waslander, S.L.: AugTrEP: scene and occlusion-aware pedestrian crossing intention prediction. In: Proceedings of the 21st Conference on Robots and Vision (2024)

    Google Scholar 

  19. Azarmi, M., Rezaei, M., Wang, H., Glaser, S.: PIP-Net: Pedestrian intention prediction in the wild, arXiv preprint arXiv:2402.12810 (2024)

  20. Cao, D., Fu, Y.: Using graph convolutional networks skeleton-based pedestrian intention estimation models for trajectory prediction. J. Phys: Conf. Ser. 1621(1), 012047 (2020)

    Google Scholar 

  21. Kotseruba, I., Rasouli, A., Tsotsos, J.K.: Do they want to cross? understanding pedestrian intention for behavior prediction. In: IEEE Intelligent Vehicles Symposium (IV), pp. 1688–1693 (2020)

    Google Scholar 

  22. Bhattacharyya, A., Fritz, M., Schiele, B.: Long-term on-board prediction of people in traffic scenes under uncertainty, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp. 4194–4202 (2018)

    Google Scholar 

  23. Wu, H., Zheng, S., Xu, Q., Wang, J.: Applying the extended theory of planned behavior to pedestrian intention estimation. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV), pp. 1509–1514 (2021)

    Google Scholar 

  24. Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Pedestrian action anticipation using contextual feature fusion in stacked RNNs, arXiv preprint arXiv:2005.06582 (2020)

  25. Yao, Y., Atkins, E., Roberson, M.J., Vasudevan, R., Du, X.: Coupling intent and action for pedestrian crossing behavior prediction, arXiv preprint arXiv:2105.04133, 2021

  26. Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Benchmark for evaluating pedestrian action prediction. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1257–1267 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yikai Bao or Nobuhiko Nishio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bao, Y., Saito, Y., Nishio, N. (2025). PIEPredict++: An Improved Pedestrian Intention Estimation Model Incorporating Comprehensive Environment Information. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2024. Lecture Notes in Computer Science, vol 15046. Springer, Cham. https://doi.org/10.1007/978-3-031-77392-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77392-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77391-4

  • Online ISBN: 978-3-031-77392-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics