Abstract
Predicting pedestrians’ highly variable crossing intentions has attracted considerable attention in autonomous driving research. This paper introduces PIEPredict++, a new model for predicting pedestrian intentions. It uses dynamic and static environmental features around pedestrians to infer intentions. To understand pedestrian behavior, we propose the EnvProcess module, incorporating the cross-attention mechanism to focus on key features in different environments. Evaluation of the publicly available pedestrian intention estimation dataset demonstrates that our model achieves exceptional results in terms of accuracy and F1 score. Our state-of-the-art performance in F1 score and recall is particularly noteworthy, underscoring the model’s exceptional ability to predict false-negative instances and its considerable implications for autonomous driving.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
References
National Highway Traffic Safety Administration: Summary report: Standing general order on crash reporting for automated driving systems. U.S, Department of Transportation (2022)
Zhang, X., Angeloudis, P., Demiris, Y.: St crossingpose: a spatial-temporal graph convolutional network for skeleton-based pedestrian-crossing intention prediction. IEEE Trans. Intell. Transp. Syst. 23(11), 20773–20782 (2022)
Rasouli, A., Kotseruba, I., Kunic, T., Tsotsos, J.K.: PIE: a large-scale dataset and models for pedestrian intention estimation and trajectory prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV), pp. 6261–6270 (2019)
Ma, J., Rong, W.: Pedestrian crossing intention prediction method based on multi-feature fusion. World Electr. Veh. J. 13(8), 158 (2022)
Yang, D., Zhang, H., Yurtsever, E., Redmill, K.A., Ozgüner, U.: Predicting pedestrian crossing intention with feature fusion and spatio-temporal attention. IEEE Trans. Intell. Transp. Syst. 7(2), 221–230 (2022)
Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 28 (2015)
Zhou, Y., Tan, G., Zhong, R., Li, Y., Gou, C.: PIT: Progressive interaction transformer for pedestrian crossing intention prediction. IEEE Trans. Intell. Transp. Syst. 24(12), 14213–14225 (2023)
Zhang, Z., Tian, R., Ding, Z.: TREP: transformer-based evidential prediction for pedestrian intention with uncertainty, in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Washington, USA, pp. 3534–3542 (2023)
Fu, Z., Jiang, K., Xie, C., Xu, Y., Huang, J., Yang, D.: Summary and reflections on pedestrian trajectory prediction in the field of autonomous driving. IEEE Trans. Intell. Veh., 1–33 (2024)
Uhlemann, N., Fent, F., Lienkamp, M.: Evaluating pedestrian trajectory prediction methods with respect to autonomous driving. IEEE Trans. Intell. Transp. Syst., 1–10 (2024)
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks, CoRR, vol. 28 (2015)
Zhou, J., Bai, X., Fu, W., Ning, B., Li, R.: Pedestrian intention estimation and trajectory prediction based on data and knowledge-driven method. IET Intell. Transp. Syst. 18(2), 315–331 (2023)
Yang, B., Zhu, J., Hu, C., Yu, Z., Hu, H., Ni, R.: Faster pedestrian crossing intention prediction based on efficient fusion of diverse intention influencing factors. IEEE Trans. Transp. Electrific., 1 (2024)
Ham, J.S., Kim, D.H., Jung, N., Moon,J.: CIPF: crossing intention prediction network based on feature fusion modules for improving pedestrian safety. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPRW), Vancouver, BC, Canada, pp. 3666–3675 (2023)
Rasouli, A., Rohani, M., Luo, J.: Bifold and semantic reasoning for pedestrian behavior prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, Canada, pp. 15600–15610 (2021)
Chen, T., Tian, R., Ding, Z.: Visual reasoning using graph convolutional networks for predicting pedestrian crossing intention. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 3096–3102 (2021)
Lorenzo, J., Parra, I., Sotelo, M.A.: IntFormer: Predicting pedestrian intention with the aid of the Transformer architecture, arXiv preprint arXiv:2105.08647 (2021)
Bhattacharjee, A., Waslander, S.L.: AugTrEP: scene and occlusion-aware pedestrian crossing intention prediction. In: Proceedings of the 21st Conference on Robots and Vision (2024)
Azarmi, M., Rezaei, M., Wang, H., Glaser, S.: PIP-Net: Pedestrian intention prediction in the wild, arXiv preprint arXiv:2402.12810 (2024)
Cao, D., Fu, Y.: Using graph convolutional networks skeleton-based pedestrian intention estimation models for trajectory prediction. J. Phys: Conf. Ser. 1621(1), 012047 (2020)
Kotseruba, I., Rasouli, A., Tsotsos, J.K.: Do they want to cross? understanding pedestrian intention for behavior prediction. In: IEEE Intelligent Vehicles Symposium (IV), pp. 1688–1693 (2020)
Bhattacharyya, A., Fritz, M., Schiele, B.: Long-term on-board prediction of people in traffic scenes under uncertainty, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp. 4194–4202 (2018)
Wu, H., Zheng, S., Xu, Q., Wang, J.: Applying the extended theory of planned behavior to pedestrian intention estimation. In: Proceedings of the IEEE Intelligent Vehicles Symposium (IV), pp. 1509–1514 (2021)
Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Pedestrian action anticipation using contextual feature fusion in stacked RNNs, arXiv preprint arXiv:2005.06582 (2020)
Yao, Y., Atkins, E., Roberson, M.J., Vasudevan, R., Du, X.: Coupling intent and action for pedestrian crossing behavior prediction, arXiv preprint arXiv:2105.04133, 2021
Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Benchmark for evaluating pedestrian action prediction. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1257–1267 (2021)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bao, Y., Saito, Y., Nishio, N. (2025). PIEPredict++: An Improved Pedestrian Intention Estimation Model Incorporating Comprehensive Environment Information. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2024. Lecture Notes in Computer Science, vol 15046. Springer, Cham. https://doi.org/10.1007/978-3-031-77392-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-77392-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77391-4
Online ISBN: 978-3-031-77392-1
eBook Packages: Computer ScienceComputer Science (R0)