Abstract
Solving point-wise feature correspondence in visual data is a fundamental problem in computer vision. A powerful model that addresses this challenge is to formulate it as graph matching, which entails solving a Quadratic Assignment Problem (QAP) with node-wise and edge-wise constraints. However, solving such a QAP can be both expensive and difficult due to numerous local extreme points. In this work, we introduce a novel linear model and solver designed to accelerate the computation of graph matching. Specifically, we employ a positive semi-definite matrix approximation to establish the structural attribute constraint. We then transform the original QAP into a linear model that is concave for maximization. This model can subsequently be solved using the Sinkhorn optimal transport algorithm, known for its enhanced efficiency and numerical stability compared to existing approaches. Experimental results on the widely used benchmark PascalVOC showcase that our algorithm achieves state-of-the-art performance with significantly improved efficiency. Source code: https://github.com/xmlyqing00/clap.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26 (2013)
Ding, C., Zhou, D., He, X., Zha, H.: R 1-PCA: rotational invariant l 1-norm principal component analysis for robust subspace factorization. In: ICML (2006)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)
Gao, Q., Wang, F., Xue, N., Yu, J., Xia, G.: Deep graph matching under quadratic constraint. In: CVPR, pp. 5067–5074 (2021)
He, J., Huang, Z., Wang, N., Zhang, Z.: Learnable graph matching: incorporating graph partitioning with deep feature learning for multiple object tracking. In: CVPR, pp. 5299–5309 (2021)
Jaggi, M., Lacoste-Julien, S.: On the global linear convergence of Frank-Wolfe optimization variants. In: NeurIPS, vol. 28 (2015)
Jiang, B., Sun, P., Tang, J., Luo, B.: Glmnet: graph learning-matching networks for feature matching. arXiv preprint arXiv:1911.07681 (2019)
Johnson, D.S., Garey, M.R.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman, New York (1979)
Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica: J. Econometr. Soc. (1957)
Kwak, N.: Principal component analysis based on l1-norm maximization. IEEE T-PAMI 30(9), 1672–1680 (2008)
Lawler, E.L.: The quadratic assignment problem. Manag. Sci. 9(4) (1963)
Liao, X., Xu, Y., Ling, H.: Hypergraph neural networks for hypergraph matching. In: ICCV, pp. 1266–1275 (2021)
Lin, Y., Yang, M., Yu, J., Hu, P., Zhang, C., Peng, X.: Graph matching with bi-level noisy correspondence. In: ICCV, pp. 23362–23371 (2023)
Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)
Lu, Y., Huang, K., Liu, C.L.: A fast projected fixed-point algorithm for large graph matching. Pattern Recogn. 60, 971–982 (2016)
Peyré, G., Cuturi, M., et al.: Computational optimal transport: with applications to data science. Found. Trends Mach. Learn. 11(5–6) (2019)
Puy, G., Boulch, A., Marlet, R.: FLOT: scene flow on point clouds guided by optimal transport. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 527–544. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_32
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: CVPR, pp. 4938–4947 (2020)
Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: Loftr: detector-free local feature matching with transformers. In: CVPR, pp. 8922–8931 (2021)
Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE T-PAMI 10(5), 695–703 (1988)
Varga, R.S.: Geršgorin and His Circles. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17798-9
Wang, F.D., Xue, N., Zhang, Y., Xia, G.S., Pelillo, M.: A functional representation for graph matching. IEEE T-PAMI 42(11), 2737–2754 (2020)
Wang, R., Guo, Z., Jiang, S., Yang, X., Yan, J.: Deep learning of partial graph matching via differentiable top-k. In: CVPR, pp. 6272–6281 (2023)
Wang, R., Yan, J., Yang, X.: Learning combinatorial embedding networks for deep graph matching. In: ICCV, pp. 3056–3065 (2019)
Wang, R., Yan, J., Yang, X.: Combinatorial learning of robust deep graph matching: an embedding based approach. IEEE T-PAMI (2020)
Wang, R., Yan, J., Yang, X.: Neural graph matching network: learning Lawler’s quadratic assignment problem with extension to hypergraph and multiple-graph matching. IEEE T-PAMI (2021)
Wang, T., Liu, H., Li, Y., Jin, Y., Hou, X., Ling, H.: Learning combinatorial solver for graph matching. In: CVPR, pp. 7568–7577 (2020)
Yu, T., Wang, R., Yan, J., Li, B.: Learning deep graph matching with channel-independent embedding and Hungarian attention. In: ICLR (2019)
Zanfir, A., Sminchisescu, C.: Deep learning of graph matching. In: CVPR, pp. 2684–2693 (2018)
Zaslavskiy, M., Bach, F., Vert, J.P.: A path following algorithm for the graph matching problem. IEEE T-PAMI 31(12), 2227–2242 (2008)
Zhang, Z., Xiang, Y., Wu, L., Xue, B., Nehorai, A.: KerGM: kernelized graph matching. In: NeurIPS, vol. 32, 3335–3346 (2019)
Zheng, W., Lin, Z., Wang, H.: L1-norm kernel discriminant analysis via Bayes error bound optimization for robust feature extraction. IEEE Trans. Neural Netw. Learn. Syst. 25(4), 793–805 (2013)
Zhou, F., De la Torre, F.: Factorized graph matching. In: CVPR. IEEE (2012)
Acknowledgments
This research was partially supported by NSF CBET-2115405 and the Texas A&M University ASCEND Research Leadership Fellows Program. Part of the experiments were conducted using the computing resources provided by Texas A&M High Performance Research Computing.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liang, Y., Han, H., Li, X. (2025). CLAP: Concave Linear APproximation for Quadratic Graph Matching. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2024. Lecture Notes in Computer Science, vol 15046. Springer, Cham. https://doi.org/10.1007/978-3-031-77392-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-77392-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77391-4
Online ISBN: 978-3-031-77392-1
eBook Packages: Computer ScienceComputer Science (R0)