Abstract
In this paper, we propose a system for the intuitive control of fluid behavior through direct manipulation. The proposed system recognizes specific hand gesture commands to manage underlying 3D fluid simulation and adjust the parameters of fluid behavior. Thus, users are allowed to control the dynamics of fluid easily without detailed knowledge of physical simulation. The proposed system is expected to bring the benefits of 3D fluid simulations to a broader range of users.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Arora, R., Kazi, R.H., Kaufman, D.M., Li, W., Singh, K.: MagicalHands: mid-air hand gestures for animating in VR. In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pp. 463–477 (2019). https://doi.org/10.1145/3332165.3347942
Desbrun, M., Gascuel, M.P.: Smoothed particles: a new paradigm for animating highly deformable bodies. In: Boulic, R., Hégron, G. (eds.) Computer Animation and Simulation 1996, pp. 61–76. Springer, Vienna (1996). https://doi.org/10.1007/978-3-7091-7486-9_5
Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method. ACM Trans. Graph. 34(4), 51 (2015). https://doi.org/10.1145/2766996
van der Laan, W.J., Green, S., Sainz, M.: Screen space fluid rendering with curvature flow. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, pp. 91–98 (2009). https://doi.org/10.1145/1507149.1507164
de Leeuw, W.C., van Wijk, J.J.: A probe for local flow field visualization. In: Proceedings of the 4th IEEE Conference on Visualization, pp. 39–45 (1993). https://doi.org/10.1109/VISUAL.1993.398849
Shi, L., Yu, Y.: Taming liquids for rapidly changing targets. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 229–236 (2005). https://doi.org/10.1145/1073368.1073401
Stomakhin, A., Selle, A.: Fluxed animated boundary method. ACM Trans. Graph. 36(4), 68 (2017). https://doi.org/10.1145/3072959.3073597
Thürey, N., Keiser, R., Pauly, M., Rüde, U.: Detail-preserving fluid control. Graph. Models 71(6), 221–228 (2009). https://doi.org/10.1016/j.gmod.2008.12.007
Ultraleap: Digital worlds that feel human | Ultraleap. https://www.ultraleap.com/. Accessed 21 July 2024
Welch, J.E., Harlow, F.H., Shannon, J.P., Daly, B.J.: The MAC method–a computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surfaces. Technical report of Los Alamos National Lab. LA-3425 (1965). https://doi.org/10.2172/4563173
Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24(3), 965–972 (2005). https://doi.org/10.1145/1073204.1073298
Acknowledgments
This work has been partially supported by Grants-in-Aid for Scientific Research (A) JP21H04916 and the Research Grant of Keio Leading-edge Laboratory of Science & Technology.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Aoyama, K., Hayakawa, Y., Fujishiro, I. (2025). 3D Fluid Shape Control by Direct Manipulation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2024. Lecture Notes in Computer Science, vol 15046. Springer, Cham. https://doi.org/10.1007/978-3-031-77392-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-77392-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77391-4
Online ISBN: 978-3-031-77392-1
eBook Packages: Computer ScienceComputer Science (R0)