Skip to main content

XAI Framework for Fall Detection in an AAL System

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2024)

Abstract

The Ambient Assisted Living (AAL) systems are human-centered and designed to prioritize the needs of elderly individuals, providing them with assistance in case of emergencies or unexpected situations. These systems involve caregivers or selected individuals who can be alerted and provide the necessary help when needed. To ensure effective assistance, it is crucial for caregivers to understand the reasons behind alarm triggers and the nature of the danger. This is where an explainability module comes into play. In this paper, we introduce an explainability module that offers visual explanations for the fall detection module. Our framework involves generating anchor boxes using the K-means algorithm to optimize object detection and using YOLOv8 for image inference. Additionally, we employ two well-known XAI (Explainable Artificial Intelligence) algorithms, LIME (Local Interpretable Model) and Grad-CAM (Gradient-weighted Class Activation Mapping), to provide visual explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhila, L., et al.: IoT-enabled geriatric health monitoring system. In: 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), pp. 803–810. IEEE (2021)

    Google Scholar 

  2. Arrotta, L., Civitarese, G., Bettini, C.: DeXAR: deep explainable sensor-based activity recognition in smart-home environments. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6(1), 1–30 (2022)

    Article  Google Scholar 

  3. Chen, F.K., Wang, Y.K., Lin, H.P., Chen, C.Y., Yeh, S.M., Wang, C.Y.: Detecting anomalies of daily living of the elderly using radar and self-comparison method. In: 2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), pp. 1–6. IEEE (2022)

    Google Scholar 

  4. Chen, T.C.T.: Explainable Ambient Intelligence (XAmI): Explainable Artificial Intelligence Applications in Smart Life. Springer (2024)

    Google Scholar 

  5. Fleming, J., Brayne, C.: Inability to get up after falling, subsequent time on floor, and summoning help: prospective cohort study in people over 90. Bmj 337 (2008)

    Google Scholar 

  6. Gao, C., Zhang, T., Jiang, X., Huang, W., Chen, Y., Li, J.: ProtoPLSTM: an interpretable deep learning approach for wearable fine-grained fall detection. In: 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta), pp. 516–524. IEEE (2022)

    Google Scholar 

  7. National Institute for Health and Care Excellence: Falls: Assessment and prevention of falls in older people (2013). https://www.nice.org.uk/guidance/cg161

  8. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLO (2023). https://github.com/ultralytics/ultralytics

  9. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLOV8 (2023). https://github.com/ultralytics/ultralytics

  10. Kalbermatter, R.B., Franco, T., Pereira, A.I., Valente, A., Soares, S.P., Lima, J.: Automatic fall detection with thermal camera. In: International Conference on Optimization, Learning Algorithms and Applications, pp. 347–359. Springer (2024)

    Google Scholar 

  11. Kim, J.K., Lee, K., Hong, S.G.: Detection of important features and comparison of datasets for fall detection based on wrist-wearable devices. Expert Syst. Appl. 234, 121034 (2023)

    Article  Google Scholar 

  12. Lord, S.R., Ward, J.A., Williams, P., Anstey, K.J.: An epidemiological study of falls in older community-dwelling women: the randwick falls and fractures study. Aust. J. Public Health 17(3), 240–245 (1993)

    Article  Google Scholar 

  13. Ma, C., Shimada, A., Uchiyama, H., Nagahara, H., Taniguchi, R.I.: Fall detection using optical level anonymous image sensing system. Opt. Laser Technol. 110, 44–61 (2019)

    Article  Google Scholar 

  14. Mankodiya, H., et al.: XAI-Fall: explainable AI for fall detection on wearable devices using sequence models and XAI techniques. Mathematics 10(12), 1990 (2022)

    Article  Google Scholar 

  15. Maskeliūnas, R., Damaševičius, R., Segal, S.: A review of Internet of Things technologies for ambient assisted living environments. Future Internet 11(12), 259 (2019)

    Article  Google Scholar 

  16. Mastorakis, G., Makris, D.: Fall detection system using kinect’s infrared sensor. J. Real-Time Image Proc. 9, 635–646 (2014)

    Article  Google Scholar 

  17. Nguyen, C.T., Phan, T.D., Duong, M.T., Nguyen, V.B., Pham, H.T., Le, M.H.: Vision-based fall detection system: novel methodology and comprehensive experiments. In: 2023 International Conference on System Science and Engineering (ICSSE), pp. 218–223. IEEE (2023)

    Google Scholar 

  18. Rajaei, H.: An IoT based smart monitoring system detecting patient falls. In: 2022 Annual Modeling and Simulation Conference (ANNSIM), pp. 839–850. IEEE (2022)

    Google Scholar 

  19. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  20. RoboFlow: YOLOv5 Fall Detection Model. https://universe.roboflow.com/hero-d6kgf/yolov5-fall-detection. Accessed May 2024

  21. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  22. Sultana, A., Deb, K., Dhar, P.K., Koshiba, T.: Classification of indoor human fall events using deep learning. Entropy 23(3), 328 (2021)

    Article  Google Scholar 

  23. Terven, J., Cordova-Esparza, D.: A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond. arXiv preprint arXiv:2304.00501 (2023)

  24. Thangaraj, P.: Falls among elderly and its relation with their health problems and surrounding environmental factors in Riyadh. J. Fam. Community Med. 25(3), 222–223 (2018)

    Article  Google Scholar 

  25. Tornero-Quiñones, I., Sáez-Padilla, J., Espina Díaz, A., Abad Robles, M.T., Sierra Robles, Á.: Functional ability, frailty and risk of falls in the elderly: relations with autonomy in daily living. Int. J. Environ. Res. Public Health 17(3), 1006 (2020)

    Article  Google Scholar 

  26. Wang, X., Jia, K.: Human fall detection algorithm based on YOLOv3. In: 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC), pp. 50–54. IEEE (2020)

    Google Scholar 

  27. Wang, X., Ellul, J., Azzopardi, G.: Elderly fall detection systems: a literature survey. Front. Robot. AI 7, 71 (2020)

    Article  Google Scholar 

  28. Yu, S., Chai, Y., Chen, H., Brown, R.A., Sherman, S.J., Nunamaker, J.F., Jr.: Fall detection with wearable sensors: a hierarchical attention-based convolutional neural network approach. J. Manag. Inf. Syst. 38(4), 1095–1121 (2021)

    Article  Google Scholar 

  29. Zhong, C., Ng, W.W.Y., Zhang, S., Nugent, C.D., Shewell, C., Medina-Quero, J.: Multi-occupancy fall detection using non-invasive thermal vision sensor. IEEE Sens. J. 21(4), 5377–5388 (2021). https://doi.org/10.1109/JSEN.2020.3032728

    Article  Google Scholar 

Download references

Acknowledgements

The cooperation was supported by the HORIZON-WIDERA-2021-ACCESS-03-01 STEP - STEM Research and Equality, Diversity and Inclusion Project, under Grant Agreement No. 101078933. The authors were supported by national funds through FCT/MCTES (PIDDAC): CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) UIDP/05757/2020 (DOI: 10.54499/UIDP/05757/2020); SusTEC, LA/P/0007/2020 (DOI: 10.54499/LA/P/0007/2020); and VASA Chatbot (VASA 22PRC210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahia Guessoum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Messaoudi, C., Kalbermatter, R.B., Lima, J., Pereira, A.I., Guessoum, Z. (2024). XAI Framework for Fall Detection in an AAL System. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2024. Communications in Computer and Information Science, vol 2280. Springer, Cham. https://doi.org/10.1007/978-3-031-77426-3_1

Download citation

Publish with us

Policies and ethics