Skip to main content

Enhancing K-Way Circuit Partitioning: A Deep Reinforcement Learning Methodology

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2024)

Abstract

Multiway circuit partitioning is a key combinatorial optimization problem that appears many times throughout the Very Large Scale Integration (VLSI) design workflow. However, as VLSI designs continue to grow in size and complexity in accordance with Moore’s law, current circuit-partitioning algorithms, which are mostly based on simple heuristics that become easily trapped in local minima, are increasingly hard-pressed to produce high-quality solutions in reasonable amounts of CPU runtime. To address this challenge, this paper proposes a novel circuit-partitioning algorithm that combines Deep Reinforcement Learning (DRL) with the popular Fiduccia-Mattheyses-Sanchis (FMS) circuit-partitioning heuristic. A DRL agent is trained to dynamically apply a perturbation function during the search in order to enable FMS escape local minima and to accelerate convergence towards higher-quality solutions. Experimental results obtained show significant improvements both in solution quality and CPU runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alpert, C.J.: The ispd98 circuit benchmark suite. In: Proceedings of the 1998 International Symposium on Physical Design, pp. 80–85. ISPD ’98, Association for Computing Machinery, New York, NY, USA (1998). https://doi.org/10.1145/274535.274546

  2. Budak, A.F., Jiang, Z., Zhu, K., Mirhoseini, A., Goldie, A., Pan, D.Z.: Reinforcement learning for electronic design automation: case studies and perspectives: (invited paper). In: 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 500–505 (2022). https://doi.org/10.1109/ASP-DAC52403.2022.9712578

  3. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent Advances in Graph Partitioning, pp. 117–158. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-49487-6_4

  4. Bustany, I., Kahng, A.B., Koutis, I., Pramanik, B., Wang, Z.: Specpart: a supervised spectral framework for hypergraph partitioning solution improvement. In: Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design. ICCAD ’22, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3508352.3549390

  5. Çatalyürek, U., et al.: More recent advances in (hyper)graph partitioning. ACM Comput. Surv. 55(12) (2023). https://doi.org/10.1145/3571808

  6. Chen, S., Cheng, C.: Tutorial on VLSI partitioning. VLSI Des. 11(3), 175–218 (2000). https://doi.org/10.1155/2000/53913

    Article  Google Scholar 

  7. Fiduccia, C., Mattheyses, R.: A linear-time heuristic for improving network partitions. In: 19th Design Automation Conference, pp. 175–181 (1982). https://doi.org/10.1109/DAC.1982.1585498

  8. Gottesbüren, L., Heuer, T., Maas, N., Sanders, P., Schlag, S.: Scalable high-quality hypergraph partitioning. ACM Trans. Algorithms 20(1) (2024). https://doi.org/10.1145/3626527

  9. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: applications in vlsi domain. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 7(1), 69–79 (1999). https://doi.org/10.1109/92.748202

  10. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970). https://doi.org/10.1002/j.1538-7305.1970.tb01770.x

    Article  Google Scholar 

  11. Kim, J., Hwang, I., Kim, Y.H., Moon, B.R.: Genetic approaches for graph partitioning: a survey. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 473–480. GECCO ’11, Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/2001576.2001642

  12. Mirhoseini, A., et al.: A graph placement methodology for fast chip design. Nature 594(7862), 207–212 (2021)

    Google Scholar 

  13. Mnih, V., et al.: Playing atari with deep reinforcement learning. CoRR abs/1312.5602 (2013). http://arxiv.org/abs/1312.5602

  14. Ren, H., et al.: Optimizing VLSI implementation with reinforcement learning - iccad special session paper. In: 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp. 1–6 (2021). https://doi.org/10.1109/ICCAD51958.2021.9643589

  15. Sanchis, L.: Multiple-way network partitioning. IEEE Trans. Comput. 38(1), 62–81 (1989). https://doi.org/10.1109/12.8730

    Article  Google Scholar 

  16. Schlag, S., Heuer, T., Gottesbüren, L., Akhremtsev, Y., Schulz, C., Sanders, P.: High-quality hypergraph partitioning. ACM J. Exp. Algorithmics 27 (2023). https://doi.org/10.1145/3529090

  17. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992). https://doi.org/10.1007/BF00992698

    Article  Google Scholar 

  18. Zhu, K., Liu, M., Chen, H., Zhao, Z., Pan, D.Z.: Exploring logic optimizations with reinforcement learning and graph convolutional network. In: 2020 ACM/IEEE 2nd Workshop on Machine Learning for CAD (MLCAD), pp. 145–150 (2020). https://doi.org/10.1145/3380446.3430622

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawki Areibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siddiqi, U.F., Chuen Cheng, K., Grewal, G., Areibi, S. (2024). Enhancing K-Way Circuit Partitioning: A Deep Reinforcement Learning Methodology. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2024. Communications in Computer and Information Science, vol 2280. Springer, Cham. https://doi.org/10.1007/978-3-031-77426-3_10

Download citation

Publish with us

Policies and ethics