Skip to main content

Optimizing Olive Disease Classification Through Hybrid Machine Learning and Deep Learning Techniques

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2024)

Abstract

Olive trees play a crucial role in the global agricultural landscape, serving as a primary source of olive oil production. However, olive trees are susceptible to several diseases, which can significantly impact yield and quality. This study addresses the challenge of improving the diagnosis of diseases in olive trees, specifically focusing on aculus olearius and Olive Peacock Spot diseases. Using a novel hybrid approach that combines deep learning and machine learning methodologies, the authors aimed to optimize disease classification accuracy by analyzing images of olive leaves. The presented methodology integrates Local Binary Patterns (LBP) and an adapted ResNet50 model for feature extraction, followed by classification through optimized machine learning models, including Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), and Random Forest (RF). The results demonstrated that the hybrid model achieved a groundbreaking accuracy of 99.11%, outperforming existing models. This advancement underscores the potential of integrated technological approaches in agricultural disease management and sets a new benchmark for the early and accurate detection of foliar diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://scikit-learn.org/stable.

  2. 2.

    https://www.tensorflow.org/.

References

  1. Ahmad, I., Basheri, M., Iqbal, M.J., Rahim, A.: Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE access 6, 33789–33795 (2018). https://doi.org/10.1109/ACCESS.2018.2841987

    Article  Google Scholar 

  2. Alshammari, H., Gasmi, K., Krichen, M., Ammar, L.B., Abdelhadi, M.O., Boukrara, A., Mahmood, M.A.: Optimal deep learning model for olive disease diagnosis based on an adaptive genet-ic algorithm. Wirel. Commun. Mob. Comput. 2022, 1–13 (2022)

    Article  Google Scholar 

  3. Alshammari, H.H., Taloba, A.I., Shahin, O.R.: Identification of olive leaf disease through optimized deep learning approach. Alex. Eng. J. 72, 213–224 (2023)

    Article  Google Scholar 

  4. Ben-Ari, G., Biton, I., Many, Y., Namdar, D., Samach, A.: Elevated temperatures negatively affect olive productive cycle and oil quality. Agronomy 11(8) (2021). https://doi.org/10.3390/agronomy11081492

  5. Benítez-Cabello, A., Delgado, A.M., Quintas, C.: Main challenges expected from the impact of climate change on microbial biodiversity of table olives: Current status and trends. Foods 12(19) (2023). https://doi.org/10.3390/foods12193712

  6. Berger, G., Mendes, J., Chellal, A., Junior, L., Silva, Y., Silva, M., Pereira, A., Faria Pinto, M., Castro, J., Valente, A., Lima, J.: A YOLO-Based Insect Detection: Potential Use of Small Multirotor Unmanned Aerial Vehicles (UAVs) Monitoring, pp. 3–17 (02 2024). https://doi.org/10.1007/978-3-031-53025-8_1

  7. Biau, G., Scornet, E.: A random forest guided tour. TEST 25(2), 197–227 (2016)

    Article  MathSciNet  Google Scholar 

  8. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

    Article  Google Scholar 

  9. Bruno, A., Moroni, D., Martinelli, M.: Efficient deep learning approach for olive disease classification. In: 2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS). pp. 889–894. IEEE (2023)

    Google Scholar 

  10. Caselli, A., Petacchi, R.: Climate change and major pests of mediterranean olive orchards: Are we ready to face the global heating? Insects 12(9) (2021). https://doi.org/10.3390/insects12090802

  11. Cetin, H., Arslan, D., Ozcan, M.M.: Influence of eriophyid mites (aculus olearius castagnoli and aceria oleae (nalepa) (acarina: Eriophyidae)) on some physical and chemical characteristics of ayvalik variety olive fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 91(3), 498–504 (FEB 2011). https://doi.org/10.1002/jsfa.4212

  12. Durmaz, H.: Olive leaves disease spotting: Pytorch and vgg16. https://www.kaggle.com/code/hikmetdurmaz/olive-leaves-disease-spotting-pytorch-and-vgg16/input (Year), accessed: January 17, 2024

  13. Habbadi, K., Maafa, I., Benbouazza, A., Aoujil, F., Choukri, H., El Houssaini, S.E.I., El Bakkali, A.: Differential response of olive cultivars to leaf spot disease (fusicladium oleagineum) under climate warming conditions in morocco. HORTICULTURAE 9(5) (MAY 16 2023). https://doi.org/10.3390/horticulturae9050589

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). https://doi.org/10.48550/arXiv.1512.03385

  15. Huang, S., Cai, N., Pacheco, P.P., Narrandes, S., Wang, Y., Xu, W.: Applications of support vector machine (svm) learning in cancer genomics. Cancer genomics & proteomics 15(1), 41–51 (2018). https://doi.org/10.21873/cgp.20063

  16. Javier Lopez-Escudero, F., Mercado-Blanco, J.: Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. PLANT AND SOIL 344(1-2), 1–50 (JUL 2011). https://doi.org/10.1007/s11104-010-0629-2

  17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. vol. 4, pp. 1942–1948 vol.4 (1995). https://doi.org/10.1109/ICNN.1995.488968

  18. Mamdouh, N., Khattab, A.: Olive leaf disease identification framework using inception v3 deep learning. In: 2022 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS). pp. 1–6. IEEE (2022)

    Google Scholar 

  19. Mendes, J., Lima, J., Costa, L., Rodrigues, N., Brandão, D., Leitão, P., Pereira, A.: Machine Learning to Identify Olive-Tree Cultivars, pp. 820–835 (01 2023). https://doi.org/10.1007/978-3-031-23236-7_56

  20. Mendes, J., Lima, J., Costa, L., Rodrigues, N., Leitão, P., Pereira, A.: An Artificial Intelligence-Based Method to Identify the Stage of Maturation in Olive Oil Mills, pp. 63–77 (02 2024). https://doi.org/10.1007/978-3-031-53036-4_5

  21. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  22. Pavlidi, N., Gioti, A., Wybouw, N., Dermauw, W., Ben-Yosef, M., Yuval, B., Jurkevich, E., Kampouraki, A., Van Leeuwen, T., Vontas, J.: Transcriptomic responses of the olive fruit fly bactrocera oleae and its symbiont candidatus erwinia dacicola to olive feeding. Sci. Rep. 7(1), 42633 (2017). https://doi.org/10.1038/srep42633

    Article  Google Scholar 

  23. Requena-Mullor, J.M., García-Garrido, J.M., García, P.A., Rodríguez, E.: Climatic drivers of verticillium dahliae occurrence in mediterranean olive-growing areas of southern spain. PLOS ONE 15(12), 1–16 (12 2021). https://doi.org/10.1371/journal.pone.0232648

  24. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016). https://doi.org/10.48550/arXiv.1609.04747

  25. Talhinhas, P., Loureiro, A., Oliveira, H.: Olive anthracnose: a yield-and oil quality-degrading disease caused by several species of colletotrichum that differ in virulence, host preference and geographical distribution. Mol. Plant Pathol. 19(8), 1797–1807 (2018). https://doi.org/10.1111/mpp.12676

    Article  Google Scholar 

  26. Uğuz, S., Uysal, N.: Classification of olive leaf diseases using deep convolutional neural networks. Neural Comput. Appl. 33(9), 4133–4149 (2021)

    Article  Google Scholar 

  27. Vossen, P.: Olive oil: History, production, and characteristics of the world’s classic oils. HortScience horts 42(5), 1093 – 1100 (2007). https://doi.org/10.21273/HORTSCI.42.5.1093

  28. Özalp, A., Akinci, H.: Evaluation of land suitability for olive (olea europaea l.) cultivation using the random forest algorithm. Agriculture 13, 1–22 (06 2023). https://doi.org/10.3390/agriculture13061208

Download references

Acknowledgements

The cooperation was supported by the HORIZON-WIDERA-2021-ACCESS-03-01 STEP - STEM Research and Equality, Diversity and Inclusion Project, under Grant Agreement No. 101078933. The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020), ALGORITMI (UIDB/00319/2020) and SusTEC (LA /P/0007/2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mendes, J. et al. (2024). Optimizing Olive Disease Classification Through Hybrid Machine Learning and Deep Learning Techniques. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2024. Communications in Computer and Information Science, vol 2280. Springer, Cham. https://doi.org/10.1007/978-3-031-77426-3_11

Download citation

Publish with us

Policies and ethics