Abstract
Object detection is a fundamental task in computer vision, playing a crucial role in various applications such as surveillance, autonomous driving, and agriculture. In agricultural contexts, object detection techniques are essential for assessing plant health and implementing targeted interventions. In this paper, we introduce a novel methodology for the detection of cochineal colonies of Dactylopius opuntiae in cactus pear, which aims to estimate the degree of infestation and facilitate precise treatment strategies. Leveraging recent advancements in deep learning, we present a new dataset specifically curated for colony cochineal detection in cactus pear. We evaluate the performance of three state-of-the-art deep learning models, namely YOLOV7, YOLOV8, and YOLO-NAS, using our dataset. Through rigorous experimentation and comparative analysis, we identify YOLOV8 as the most effective model for colony cochineal detection in cactus pear. The proposed approach not only offers accurate colony detection but also provides valuable insights for implementing precise treatment measures, thereby contributing to the efficient management of plant infestations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Diwan, T., Anirudh, G., Tembhurne, J.V.: Object detection using YOLO: challenges, architectural successors, datasets and applications. Multimed. Tools Appl. 82(6), 9243–9275 (2023)
Vijayakumar, A., Vairavasundaram, S.: YOLO-based object detection models: a review and its applications. Multimed. Tools Appl. 1–40 (2024)
Kaur, R., Singh, S.: A comprehensive review of object detection with deep learning. Digit. Signal Process. 132, 103812 (2023)
Shubo, X., Zhang, M., Song, W., Mei, H., He, Q., Liotta, A.: A systematic review and analysis of deep learning-based underwater object detection. Neurocomputing 527, 204–232 (2023)
Khalid, S., Oqaibi, H.M., Aqib, M., Hafeez, Y.: Small pests detection in field crops using deep learning object detection. Sustainability 15(8), 6815 (2023)
Xiang, Q., Huang, X., Huang, Z., Chen, X., Cheng, J., Tang, X.: YOLO-pest: an insect pest object detection algorithm via CAC3 module. Sensors 23(6), 3221 (2023)
Teixeira, A.C., Ribeiro, J., Morais, R., Sousa, J.J., Cunha, A.: A systematic review on automatic insect detection using deep learning. Agriculture 13(3), 713 (2023)
El Aalaoui, M., Sbaghi, M.: Potential of parasitoids to control diaspis echinocacti (bouché)(hemiptera: Diaspididae) on opuntia spp. cactus pear. Egypt. J. Biol. Pest Control 33(1), 57 (2023)
El Fakhouri, K., et al.: Isolation, identification and pathogenicity of local entomopathogenic bacteria as biological control agents against the wild cochineal Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Sci. Rep. 13(1), 21647 (2023)
Vanegas-Rico, J.M., Lomelí-Flores, J.R., Rodríguez-Leyva, E., Mora-Aguilera, G., Valdez, J.M.: Enemigos naturales de dactylopius opuntiae (cockerell) en opuntia ficus-indica (l.) miller en el centro de méxico. Acta zoológica mexicana 26(2), 415–433 (2010)
Ramdani, C., et al.: Chemical composition and insecticidal potential of six essential oils from morocco against dactylopius opuntiae (cockerell) under field and laboratory conditions. Insects 12(11), 1007 (2021)
Ramdani, C., et al.: Entomopathogenic fungi as biological control agents of dactylopius opuntiae (hemiptera: Dactylopiidae) under laboratory and greenhouse conditions. Frontiers in Sustain. Food Syst. 6, 997254 (2022)
Naboulsi, I., et al.: Insecticidal activities of atriplex halimus l., salvia rosmarinus spenn. and cuminum cyminum l. against dactylopius opuntiae (cockerell) under laboratory and greenhouse conditions. Insects 13(10), 930 (2022)
Naboulsi, I., et al.: Chemical profiling of artemisia herba-alba, cuminum cyminum, cinnamomum camphora, and salvia rosmarinus essential oils and assessment of their insecticidal potential to control the wild cochineal dactylopius opuntiae (cockerell). Crop Protect. 171, 106286 (2023)
Park, Y.-H., Choi, S.H., Kwon, Y.-J., Kwon, S.-W., Kang, Y.J., Jun, T.-H.: Detection of soybean insect pest and a forecasting platform using deep learning with unmanned ground vehicles. Agronomy 13(2), 477 (2023)
Liu, B., Jia, Y., Liu, L.: Skip DETR: end-to-end skip connection model for small object detection in forestry pest dataset. Front. Plant Sci. 14, 1219474 (2023)
Costa, D., Silva, C., Costa, J., Ribeiro, B.: Enhancing pest detection models through improved annotations. In: EPIA Conference on Artificial Intelligence, pp. 364–375. Springer (2023)
Kaur, J., Singh, W.: A systematic review of object detection from images using deep learning. Multimed. Tools Appl. 83(4), 12253–12338 (2024)
Ge, L., Singh, P., Sadhu, A.: Advanced deep learning framework for underwater object detection with multibeam forward-looking sonar. Struct. Health Monit.14759217241235637 (2024)
Ai, Y., Song, R., Huang, C., Cui, C., Tian, B., Chen, L.: A real-time road boundary detection approach in surface mine based on meta random forest. IEEE Trans. Intell. Veh. (2023)
Shukla, R.K., Tiwari, A.K., Jha, A.K., et al.: An efficient approach of face detection and prediction of drowsiness using SVM. Math. Probl. Eng. 2023 (2023)
Xiong, S., Li, B., Zhu, S.: DCGNN: a single-stage 3D object detection network based on density clustering and graph neural network. Complex Intell.Sys. 9(3), 3399–3408 (2023)
Rahman, A., Lu, Y., Wang, H.: Performance evaluation of deep learning object detectors for weed detection for cotton. Smart Agric. Technol. 3, 100126 (2023)
Song, P., Li, P., Dai, L., Wang, T., Chen, Z.: Boosting R-CNN: Reweighting R-CNN samples by RPN’s error for underwater object detection. Neurocomputing 530, 150–164 (2023)
Nandhini, T.J., Thinakaran, K.: Object detection algorithm based on multi-scaled convolutional neural networks. In: 2023 3rd International conference on Artificial Intelligence and Signal Processing (AISP), pp. 1–5. IEEE (2023)
Taye, M.M.: Theoretical understanding of convolutional neural network: concepts, architectures, applications, future directions. Computation 11(3), 52 (2023)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B.: A review of yolo algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022)
Li, Y., Mao, H., Girshick, R., He, K.: Exploring plain vision transformer backbones for object detection. In: European Conference on Computer Vision, pp. 280–296. Springer (2022)
Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023)
Jocher, G., et al.: Ultralytics/YOLOv5: v5. 0-YOLOv5-p6 1280 models, AWS, supervise. ly and YouTube integrations. Zenodo (2021)
Yung, N.D.T., Wong, W.K., Juwono, F.H., Sim, Z.A.: Safety helmet detection using deep learning: implementation and comparative study using YOLOv5, YOLOv6, and YOLOv7. In: 2022 International Conference on Green Energy, Computing and Sustainable Technology (GECOST), pp. 164–170. IEEE (2022)
Silva, S.Q.: Proposta para avaliação do controle biológico da cochonilha diaspis echinocacti (bouché, 1833) (homoptera, diaspididae) da palma forrageira em pernambuco. Mater’s thesis, Universidade Federal Rural de Pernambuco, Recife, Brazil (1991)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Zhao, H., Zhang, H., Zhao, Y.: YOLOv7-sea: Object detection of maritime UAV images based on improved YOLOv7. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 233–238 (2023)
Rangga Gelar Guntara: Pemanfaatan google colab untuk aplikasi pendeteksian masker wajah menggunakan algoritma deep learning YOLOv7. J. Teknol. Sist. Informasi Bisnis 5(1), 55–60 (2023)
Terven, J., Cordova-Esparza, D.: A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS. arXiv preprint arXiv:2304.00501 (2023)
Hussain, M.: YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection. Machines 11(7), 677 (2023)
Talaat, F.M., ZainEldin, H.: An improved fire detection approach based on YOLO-v8 for smart cities. Neural Comput. Appl. 35(28), 20939–20954 (2023)
Zhang, Y., et al.: Deep learning models for waterfowl detection and classification in aerial images. Information 15(3), 157 (2024)
Casas, E., Ramos, L., Bendek, E., Rivas-Echeverría, F.: Assessing the effectiveness of YOLO architectures for smoke and wildfire detection. IEEE Access (2023)
Padilla, R., Netto, S.L., Da Silva, E.A.B.: A survey on performance metrics for object-detection algorithms. In: 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 237–242. IEEE (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Salhi, W., El Fakhouri, K., El Bouhssini, M., El Alami, R., Griguer, H. (2024). Cochineal Colony Detection in Cactus Pear: A Deep Learning Approach. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2024. Communications in Computer and Information Science, vol 2280. Springer, Cham. https://doi.org/10.1007/978-3-031-77426-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-77426-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77425-6
Online ISBN: 978-3-031-77426-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)