Skip to main content

Fuzzy c-Means as a Decision Support Tool for Liver Disease Diagnosis Based on Data Analysis

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2024)

Abstract

The liver is a vital organ responsible for numerous essential functions in the body. Thus, liver disorders can have severe consequences on overall health and well-being. Early diagnosis and treatment of liver disorders are crucial to prevent complications such as cirrhosis, liver failure and liver cancer. In this work, a data analysis system aims to identify the most important features in defining liver disease and categorize sick patients according to the severity of the disease. The Indian Liver Patient Dataset was evaluated using a pre-processing data analysis method that considered the Z-score, the correlation, and the Recursive Feature Elimination. After identifying the most important characteristics of the patients, the Fuzzy c-means algorithm was used to classify them based on the severity of the disease. The results of the proposed methodology proved to be effective in creating a decision support system, since it was possible to identify four levels of severity among the patients.

This work has been supported by FCT Fundação para a Ciência e Tecnologia within the R&D Units Project Scope UIDB/00319/2020, UIDB/05757/2020 (DOI: 10.54499/UIDB/057 57/2020), UIDP/05757/2020 (DOI: 10.54499/UIDP/05757/2020) and Erasmus Plus KA2 within the project 2021-1-PT01-KA220-HED-000023288. Beatriz Flamia Azevedo is supported by FCT Grant Reference SFRH/BD/07427/2021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, C.C., Reddy, C.K.: Data Custering Algorithms and Applications. Taylor & Francis Group. CRC Press, Boca Raton (2013)

    Google Scholar 

  2. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recogn. 46(1), 243–256 (2013). https://doi.org/10.1016/j.patcog.2012.07.021

    Article  Google Scholar 

  3. Azevedo, B.F., Rocha, A.M.A.C., Pereira, A.I.: Hybrid approaches to optimization and machine learning methods: a systematic literature review. J. Mach. Learn. (2024). https://doi.org/10.1007/s10994-023-06467-x

  4. Bowers, A.: Analyzing the longitudinal k-12 grading histories of entire cohorts of students: grades, data driven decision making, dropping out and hierarchical cluster analysis. Pract. Assess. Res. Eval. 15 (2010)

    Google Scholar 

  5. Bressan, G.M., Azevedo, B., de Souza, R.M.: A fuzzy approach for diabetes mellitus type 2 classification. Braz. Arch. Biol. Technol. (2020). https://doi.org/10.1590/1678-4324-2020180742

    Article  Google Scholar 

  6. Bressan, G.M., de Azevedo, B.C.F., de Souza, R.M.: Automatic classification methods for predicting clinical profile of patients with diabetes mellitus; [métodos de classificação automática para predição do perfil clínico de pacientes portadores do diabetes mellitus] 38(2), 257 – 273 (2020). https://doi.org/10.28951/rbb.v38i2.445

  7. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3(1), 1–27 (1974). https://doi.org/10.1080/03610927408827101

    Article  MathSciNet  Google Scholar 

  8. Carpenter, J.R., Hoffmann, T.P.: Statistics for Data Science: A Comprehensive Introduction. Wiley, Hoboken (2019)

    Google Scholar 

  9. Chen, X.W., Jeong, J.C.: Enhanced recursive feature elimination, pp. 429 – 435, January 2008. https://doi.org/10.1109/ICMLA.2007.35

  10. Chen, Y., et al.: Albumin/Globulin ratio as Yin-Yang in rheumatoid arthritis and its correlation to Inflamm-Aging cytokines. J. Inflamm. Res. 14, 5501–5511 (2021)

    Google Scholar 

  11. Devarbhavi, H., Asrani, S.K., Arab, J.P., Nartey, Y.A., Pose, E., Kamath, P.S.: Global burden of liver disease: 2023 update. J. Hepatol. 78(6), 1235–1248 (2023). https://doi.org/10.1016/j.jhep.2023.03.017

    Article  Google Scholar 

  12. Dibekulu, D.: An overview of data analysis and interpretations in research, pp. 1–27, January 2020. https://doi.org/10.14662/IJARER2020.015

  13. Fisher, R.A.: Statistical Methods for Research Workers. Hafner, New York (1958)

    Google Scholar 

  14. Funken, T., Meisen, T.: System design to utilize domain expertise for visual exploratory data analysis. Information 12, 140 (2021). https://doi.org/10.3390/info12040140

  15. Gupta, D., Hazarika, B.B., Borah, P.: Fuzzy twin kernel ridge regression classifiers for liver disorder detection. Int. J. Bus. Intell. Data Min. 24(2), 131–145 (2024). https://doi.org/10.1504/ijbidm.2024.136429

  16. Guy, J., Peters, M.G.: Liver disease in women: the influence of gender on epidemiology, natural history, and patient outcomes. Gastroenterol. Hepatol. (N Y) 9(10), 633–639 (2013)

    Google Scholar 

  17. Hargreaves, T.: The liver and bile metabolism. North-Holland Publishing Company Appleton-Century-Crofts (1968)

    Google Scholar 

  18. Li, X., Li, X., Zhao, W., Wang, D.: Development and validation of a nomogram for predicting in-hospital death in cirrhotic patients with acute kidney injury. BMC Nephrology 25(1) (2024). https://doi.org/10.1186/s12882-024-03609-8, cited by: 0; All Open Access, Gold Open Access

  19. Lin, R.H.: An intelligent model for liver disease diagnosis. Artif. Intell. Med. 47(1), 53–62 (2009). https://doi.org/10.1016/j.artmed.2009.05.005

    Article  Google Scholar 

  20. Musleh, M.M., Alajrami, E., Khalil, A.J., Abu-Nasser, B.S., Barhoom, A.M., Naser, S.A.: Predicting liver patients using artificial neural network, pp. 1–11, October 2019

    Google Scholar 

  21. Manual, M.: Blood tests: normal values. https://www.msdmanuals.com/en-pt/professional/resources/normal-laboratory-values/blood-tests-normal-values. acessado em 5 de Maio de 2024

  22. Newman, T.B., Maisels, M.J.: Evaluation and treatment of jaundice in the term newborn: a kinder, gentler approach. Pediatrics 89(5), 809–818 (1992). https://doi.org/10.1542/peds.89.5.809

  23. Pardeshi, N.G., Patil, D.V.: Applying gini importance and rfe methods for feature selection in shallow learning models for implementing effective intrusion detection system. In: Proceedings of the International Conference on Applications of Machine Intelligence and Data Analytics (ICAMIDA 2022), pp. 214–234. Atlantis Press (2023). https://doi.org/10.2991/978-94-6463-136-4-21

  24. Rabbi, M.F., Mahedy Hasan, S.M., Champa, A.I., AsifZaman, M., Hasan, M.K.: Prediction of liver disorders using machine learning algorithms: a comparative study. In: 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT), pp. 111–116 (2020). https://doi.org/10.1109/ICAICT51780.2020.9333528

  25. Rahman, A.K.M., Shamrat, F.M., Tasnim, Z., Roy, J., Hossain, S.: A comparative study on liver disease prediction using supervised machine learning algorithms 8, 419–422 (2019)

    Google Scholar 

  26. Rahman, A., Ahmed, M., Iqbal, S., Azam, M.: Prediction of liver diseases by using few machine learning based approaches 2, 85–90 (2020). https://doi.org/10.34104/ajeit.020.085090

  27. Ramana, B., Venkateswarlu, N.: ILPD (Indian Liver Patient Dataset). UCI Machine Learning Repository (2012). https://doi.org/10.24432/C5D02C

  28. Rawal, R., Kharangarh, P.R., Dawra, S., Tomar, M., Gupta, V., Pundir, C.: A comprehensive review of bilirubin determination methods with special emphasis on biosensors. Process Biochem. 89, 165–174 (2020). https://doi.org/10.1016/j.procbio.2019.10.034

    Article  Google Scholar 

  29. Straw, I., Wu, H.: Investigating for bias in healthcare algorithms: a sex-stratified analysis of supervised machine learning models in liver disease prediction. BMJ Health Care Inform. 29 (2022). https://api.semanticscholar.org/CorpusID:248390297

  30. Taipalus, T., Isomöttönen, V., Erkkilä, H., Äyrämö, S.: Data analytics in healthcare: a tertiary study. SN Comput. Sci. 4(1), 87 (2022)

    Article  Google Scholar 

  31. Takeuchi, I., et al.: Usefulness of evaluating the albumin-to-globulin ratio in investigating the etiology of severe hypokalemia. J. Emerg. Trauma Shock 16(2), 72–73 (2023)

    Article  Google Scholar 

  32. Wu, C.C., et al.: Prediction of fatty liver disease using machine learning algorithms. Comput. Methods Programs Biomed. 170, 23–29 (2019). https://doi.org/10.1016/j.cmpb.2018.12.032

  33. Wu, Y., Duan, H., Du, S., Ciaccio, E.J.: Multiple fuzzy c-means clustering algorithm in medical diagnosis. Technol. Health Care 23(s2), S519–S527 (2015). https://doi.org/10.3233/THC-150989

  34. Zou, K.H., Tuncali, K., Silverman, S.G.: Correlation and simple linear regression. Radiology 227(3), 617–628 (2003). https://doi.org/10.1148/radiol.2273011499

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel A. Leite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leite, G.A., Azevedo, B.F., Ferreira, S.R., Pacheco, M.F., Fernandes, F.P., Pereira, A.I. (2024). Fuzzy c-Means as a Decision Support Tool for Liver Disease Diagnosis Based on Data Analysis. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2024. Communications in Computer and Information Science, vol 2280. Springer, Cham. https://doi.org/10.1007/978-3-031-77426-3_7

Download citation

Publish with us

Policies and ethics