Abstract
The liver is a vital organ responsible for numerous essential functions in the body. Thus, liver disorders can have severe consequences on overall health and well-being. Early diagnosis and treatment of liver disorders are crucial to prevent complications such as cirrhosis, liver failure and liver cancer. In this work, a data analysis system aims to identify the most important features in defining liver disease and categorize sick patients according to the severity of the disease. The Indian Liver Patient Dataset was evaluated using a pre-processing data analysis method that considered the Z-score, the correlation, and the Recursive Feature Elimination. After identifying the most important characteristics of the patients, the Fuzzy c-means algorithm was used to classify them based on the severity of the disease. The results of the proposed methodology proved to be effective in creating a decision support system, since it was possible to identify four levels of severity among the patients.
This work has been supported by FCT Fundação para a Ciência e Tecnologia within the R&D Units Project Scope UIDB/00319/2020, UIDB/05757/2020 (DOI: 10.54499/UIDB/057 57/2020), UIDP/05757/2020 (DOI: 10.54499/UIDP/05757/2020) and Erasmus Plus KA2 within the project 2021-1-PT01-KA220-HED-000023288. Beatriz Flamia Azevedo is supported by FCT Grant Reference SFRH/BD/07427/2021.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, C.C., Reddy, C.K.: Data Custering Algorithms and Applications. Taylor & Francis Group. CRC Press, Boca Raton (2013)
Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J.M., Perona, I.: An extensive comparative study of cluster validity indices. Pattern Recogn. 46(1), 243–256 (2013). https://doi.org/10.1016/j.patcog.2012.07.021
Azevedo, B.F., Rocha, A.M.A.C., Pereira, A.I.: Hybrid approaches to optimization and machine learning methods: a systematic literature review. J. Mach. Learn. (2024). https://doi.org/10.1007/s10994-023-06467-x
Bowers, A.: Analyzing the longitudinal k-12 grading histories of entire cohorts of students: grades, data driven decision making, dropping out and hierarchical cluster analysis. Pract. Assess. Res. Eval. 15 (2010)
Bressan, G.M., Azevedo, B., de Souza, R.M.: A fuzzy approach for diabetes mellitus type 2 classification. Braz. Arch. Biol. Technol. (2020). https://doi.org/10.1590/1678-4324-2020180742
Bressan, G.M., de Azevedo, B.C.F., de Souza, R.M.: Automatic classification methods for predicting clinical profile of patients with diabetes mellitus; [métodos de classificação automática para predição do perfil clínico de pacientes portadores do diabetes mellitus] 38(2), 257 – 273 (2020). https://doi.org/10.28951/rbb.v38i2.445
Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. 3(1), 1–27 (1974). https://doi.org/10.1080/03610927408827101
Carpenter, J.R., Hoffmann, T.P.: Statistics for Data Science: A Comprehensive Introduction. Wiley, Hoboken (2019)
Chen, X.W., Jeong, J.C.: Enhanced recursive feature elimination, pp. 429 – 435, January 2008. https://doi.org/10.1109/ICMLA.2007.35
Chen, Y., et al.: Albumin/Globulin ratio as Yin-Yang in rheumatoid arthritis and its correlation to Inflamm-Aging cytokines. J. Inflamm. Res. 14, 5501–5511 (2021)
Devarbhavi, H., Asrani, S.K., Arab, J.P., Nartey, Y.A., Pose, E., Kamath, P.S.: Global burden of liver disease: 2023 update. J. Hepatol. 78(6), 1235–1248 (2023). https://doi.org/10.1016/j.jhep.2023.03.017
Dibekulu, D.: An overview of data analysis and interpretations in research, pp. 1–27, January 2020. https://doi.org/10.14662/IJARER2020.015
Fisher, R.A.: Statistical Methods for Research Workers. Hafner, New York (1958)
Funken, T., Meisen, T.: System design to utilize domain expertise for visual exploratory data analysis. Information 12, 140 (2021). https://doi.org/10.3390/info12040140
Gupta, D., Hazarika, B.B., Borah, P.: Fuzzy twin kernel ridge regression classifiers for liver disorder detection. Int. J. Bus. Intell. Data Min. 24(2), 131–145 (2024). https://doi.org/10.1504/ijbidm.2024.136429
Guy, J., Peters, M.G.: Liver disease in women: the influence of gender on epidemiology, natural history, and patient outcomes. Gastroenterol. Hepatol. (N Y) 9(10), 633–639 (2013)
Hargreaves, T.: The liver and bile metabolism. North-Holland Publishing Company Appleton-Century-Crofts (1968)
Li, X., Li, X., Zhao, W., Wang, D.: Development and validation of a nomogram for predicting in-hospital death in cirrhotic patients with acute kidney injury. BMC Nephrology 25(1) (2024). https://doi.org/10.1186/s12882-024-03609-8, cited by: 0; All Open Access, Gold Open Access
Lin, R.H.: An intelligent model for liver disease diagnosis. Artif. Intell. Med. 47(1), 53–62 (2009). https://doi.org/10.1016/j.artmed.2009.05.005
Musleh, M.M., Alajrami, E., Khalil, A.J., Abu-Nasser, B.S., Barhoom, A.M., Naser, S.A.: Predicting liver patients using artificial neural network, pp. 1–11, October 2019
Manual, M.: Blood tests: normal values. https://www.msdmanuals.com/en-pt/professional/resources/normal-laboratory-values/blood-tests-normal-values. acessado em 5 de Maio de 2024
Newman, T.B., Maisels, M.J.: Evaluation and treatment of jaundice in the term newborn: a kinder, gentler approach. Pediatrics 89(5), 809–818 (1992). https://doi.org/10.1542/peds.89.5.809
Pardeshi, N.G., Patil, D.V.: Applying gini importance and rfe methods for feature selection in shallow learning models for implementing effective intrusion detection system. In: Proceedings of the International Conference on Applications of Machine Intelligence and Data Analytics (ICAMIDA 2022), pp. 214–234. Atlantis Press (2023). https://doi.org/10.2991/978-94-6463-136-4-21
Rabbi, M.F., Mahedy Hasan, S.M., Champa, A.I., AsifZaman, M., Hasan, M.K.: Prediction of liver disorders using machine learning algorithms: a comparative study. In: 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT), pp. 111–116 (2020). https://doi.org/10.1109/ICAICT51780.2020.9333528
Rahman, A.K.M., Shamrat, F.M., Tasnim, Z., Roy, J., Hossain, S.: A comparative study on liver disease prediction using supervised machine learning algorithms 8, 419–422 (2019)
Rahman, A., Ahmed, M., Iqbal, S., Azam, M.: Prediction of liver diseases by using few machine learning based approaches 2, 85–90 (2020). https://doi.org/10.34104/ajeit.020.085090
Ramana, B., Venkateswarlu, N.: ILPD (Indian Liver Patient Dataset). UCI Machine Learning Repository (2012). https://doi.org/10.24432/C5D02C
Rawal, R., Kharangarh, P.R., Dawra, S., Tomar, M., Gupta, V., Pundir, C.: A comprehensive review of bilirubin determination methods with special emphasis on biosensors. Process Biochem. 89, 165–174 (2020). https://doi.org/10.1016/j.procbio.2019.10.034
Straw, I., Wu, H.: Investigating for bias in healthcare algorithms: a sex-stratified analysis of supervised machine learning models in liver disease prediction. BMJ Health Care Inform. 29 (2022). https://api.semanticscholar.org/CorpusID:248390297
Taipalus, T., Isomöttönen, V., Erkkilä, H., Äyrämö, S.: Data analytics in healthcare: a tertiary study. SN Comput. Sci. 4(1), 87 (2022)
Takeuchi, I., et al.: Usefulness of evaluating the albumin-to-globulin ratio in investigating the etiology of severe hypokalemia. J. Emerg. Trauma Shock 16(2), 72–73 (2023)
Wu, C.C., et al.: Prediction of fatty liver disease using machine learning algorithms. Comput. Methods Programs Biomed. 170, 23–29 (2019). https://doi.org/10.1016/j.cmpb.2018.12.032
Wu, Y., Duan, H., Du, S., Ciaccio, E.J.: Multiple fuzzy c-means clustering algorithm in medical diagnosis. Technol. Health Care 23(s2), S519–S527 (2015). https://doi.org/10.3233/THC-150989
Zou, K.H., Tuncali, K., Silverman, S.G.: Correlation and simple linear regression. Radiology 227(3), 617–628 (2003). https://doi.org/10.1148/radiol.2273011499
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Leite, G.A., Azevedo, B.F., Ferreira, S.R., Pacheco, M.F., Fernandes, F.P., Pereira, A.I. (2024). Fuzzy c-Means as a Decision Support Tool for Liver Disease Diagnosis Based on Data Analysis. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2024. Communications in Computer and Information Science, vol 2280. Springer, Cham. https://doi.org/10.1007/978-3-031-77426-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-77426-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77425-6
Online ISBN: 978-3-031-77426-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)