Abstract
This article proposes methods for maximising the detection rates of thermal fiducial markers using thermography. By exploring the combination of image processing techniques with the use of an affordable thermographic camera, the aim is to mitigate the negative effects of thermography and improve accurate marker identification in a variety of mounting and distance conditions. The research identified a diversity of processing techniques capable of improving thermal marker recognition, offering the potential to surpass previous results. The results highlight the possibility of using low-cost thermographic cameras for this purpose, which could democratise and reduce the costs of recognition processes. This methodology validates the proposed approach, providing a robust basis for future improvements in thermal marker detection and promoting the feasibility of practical, low-cost applications in an assortment of fields.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Results were obtained both with and without the application of the steps, to evaluate the effectiveness of the transformations.
References
Claro, R.M., Silva, D.B., Pinto, A.M.: Artuga: a novel multimodal fiducial marker for aerial robotics. Robot. Auton. Syst. 163, 104398 (2023). https://doi.org/10.1016/J.ROBOT.2023.104398
Field, T., Leibs, J., Bowman, J., Thomas, D., Perron, J., Carroll, M.: Rosbag - ros wiki (2020). http://wiki.ros.org/rosbag
França, A.: Seek thermal ros (2023). https://github.com/alf767443/SeekThermal_ROS
Garrido, S., Panov, A.: Opencv: detection of aruco markers. https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
Khattak, S., Papachristos, C., Alexis, K.: Marker based thermal-inertial localization for aerial robots in obscurant filled environments. In: Bebis, G., et al. (eds.) ISVC 2018. LNCS, vol. 11241, pp. 565–575. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03801-4_49, http://arxiv.org/abs/1903.00782
Lebedev, I., Erashov, A., Shabanova, A.: Accurate autonomous UAV landing using vision-based detection of ArUco-Marker. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2020. LNCS (LNAI), vol. 12336, pp. 179–188. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60337-3_18, https://doi.org/10.1007/978-3-030-60337-3_18/COVER
Miranda, V.R., Rezende, A.M., Rocha, T.L., Azpúrua, H., Pimenta, L.C., Freitas, G.M.: Autonomous navigation system for a delivery drone. J. Control Autom. Electr. Syst. 33, 141–155 (2022). https://doi.org/10.1007/S40313-021-00828-4/TABLES/2, https://doi.org/10.1007/S40313-021-00828-4
NVIDIA: Kit de desenvolvedor jetson nano para ai e robótica — nvidia. https://www.nvidia.com/pt-br/autonomous-machines/embedded-systems/jetson-nano/
OpenCV: Opencv: Aruco markers and boards detection for robust camera pose estimation. https://docs.opencv.org/4.x/de/d67/group__objdetect__aruco.html
OpenCV: Opencv: Image thresholding. https://docs.opencv.org/3.4/d7/d4d/tutorial_py_thresholding.html
OpenCV: Opencv 4.7.0 is now available! - opencv (2022). https://opencv.org/blog/opencv-4-7-0/
OpenCV: Opencv: Image filtering (2024). https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html
OpenCV: Opencv: Miscellaneous image transformations (2024). https://docs.opencv.org/3.4/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57
OpenCV: Opencv: Smoothing images (2024). https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html
SeekThermal: seekthermal/seekcamera-python: Python language bindings for the seek thermal sdk (2024). https://github.com/seekthermal/seekcamera-python
Simões, E.: Targets para realidade aumentada. o target, ou marcador, é uma imagem no... — by erick simões — nave recife — medium (2020). https://medium.com/nave-recife/targets-para-realidade-aumentada-60235dda01a0
Thermal, S.: Thermal cameras for your smartphone - seek thermal — affordable infrared thermal imaging cameras (2024). https://www.thermal.com/compact-series.html
Urzedowski, A., Migasiuk, D.W., Buraczynska, B.: Visual effects of surface emissivity in thermal imaging. Adv. Sci. Technol. Res. J. 14, 215–222 (2020). https://doi.org/10.12913/22998624/118103
Acknowledgments
The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI, UIDB/05757/2020 (DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI: 10.54499/UIDP/05757/2020) and SusTEC, LA/P/000 7/2020 (DOI: 10.54499/LA/P/0007/2020).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
França, A., Berger, G.S., Mendes, A., Lima, J. (2024). Enhancing Thermal Fiducial Marker Detection: Focus on Image Processing Techniques. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2024. Communications in Computer and Information Science, vol 2281. Springer, Cham. https://doi.org/10.1007/978-3-031-77432-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-77432-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77431-7
Online ISBN: 978-3-031-77432-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)