Skip to main content

Optimizing Food Delivery Efficiency: The Impact of Order Aggregation and Courier Assignment Strategies

  • Conference paper
  • First Online:
Optimization, Learning Algorithms and Applications (OL2A 2024)

Abstract

The increasing demand for food delivery services necessitates optimizing courier efficiency to maintain service quality and cost-effectiveness. This study investigates the impact of order aggregation and courier assignment strategies on food delivery performance. We explore various order aggregation methods, including KMeans and DBSCAN clustering, and compare them with different courier assignment approaches, such as first-in-first-out and nearest courier selection. Through experiments on both synthetic and real-world data, we demonstrate that order aggregation, particularly when combined with the nearest courier approach, significantly reduces delivery times and courier travel distances, especially under high order volumes. Our findings provide valuable insights for food delivery platforms seeking to optimize their operations and enhance customer satisfaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agnetis, A., Cosmi, M., Nicosia, G., Pacifici, A.: Two is better than one? order aggregation in a meal delivery scheduling problem. Comput. Ind. Eng. 183, 109514 (2023). https://doi.org/10.1016/j.cie.2023.109514

    Article  Google Scholar 

  2. Bozanta, A., et al.: Courier routing and assignment for food delivery service using reinforcement learning. Comput. Ind. Eng. 164, 107871 (2022). https://doi.org/10.1016/j.cie.2021.107871

    Article  Google Scholar 

  3. Cosmi, M., Oriolo, G., Piccialli, V., Ventura, P.: Single courier single restaurant meal delivery (without routing). Oper. Res. Lett. 47(6), 537–541 (2019). https://doi.org/10.1016/j.orl.2019.09.007

    Article  MathSciNet  Google Scholar 

  4. Côté, J.F., Alves de Queiroz, T., Gallesi, F., Iori, M.: A branch-and-regret algorithm for the same-day delivery problem. Transport. Res. Part E: Logist. Transport. Rev. 177, 103226 (2023). https://doi.org/10.1016/j.tre.2023.103226

  5. Fikar, C., Braekers, K.: Bi-objective optimization of e-grocery deliveries considering food quality losses. Comput. Ind. Eng. 163, 107848 (2022). https://doi.org/10.1016/j.cie.2021.107848

    Article  Google Scholar 

  6. Jahanshahi, H., et al.: A deep reinforcement learning approach for the meal delivery problem. Knowl.-Based Syst. 243, 108489 (2022). https://doi.org/10.1016/j.knosys.2022.108489

    Article  Google Scholar 

  7. Joshi, M., Singh, A., Ranu, S., Bagchi, A., Karia, P., Kala, P.: Batching and matching for food delivery in dynamic road networks. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 2099–2104 (2021). https://doi.org/10.1109/ICDE51399.2021.00207

  8. Klein, V., Steinhardt, C.: Dynamic demand management and online tour planning for same-day delivery. Eur. J. Oper. Res. 307(2), 860–886 (2023). https://doi.org/10.1016/j.ejor.2022.09.011

    Article  Google Scholar 

  9. Mao, W., Ming, L., Rong, Y., Tang, C.S., Zheng, H.: Faster deliveries and smarter order assignments for an on-demand meal delivery platform. Available at SSRN 3469015 (2019)

    Google Scholar 

  10. Reyes, D., Erera, A., Savelsbergh, M., Sahasrabudhe, S., O’Neil, R.: The meal delivery routing problem. Optim. Online 6571 (2018)

    Google Scholar 

  11. Simoni, M.D., Winkenbach, M.: Crowdsourced on-demand food delivery: an order batching and assignment algorithm. Transport. Res. Part C: Emerg. Technol. 149, 104055 (2023). https://doi.org/10.1016/j.trc.2023.104055

    Article  Google Scholar 

  12. Steever, Z., Karwan, M., Murray, C.: Dynamic courier routing for a food delivery service. Comput. Oper. Res. 107, 173–188 (2019). https://doi.org/10.1016/j.cor.2019.03.008

    Article  MathSciNet  Google Scholar 

  13. Techno: Amazon business research analyst (2022). https://doi.org/10.34740/KAGGLE/DSV/4141593. https://www.kaggle.com/dsv/4141593

  14. Ulmer, M.W., Thomas, B.W., Campbell, A.M., Woyak, N.: The restaurant meal delivery problem: dynamic pickup and delivery with deadlines and random ready times. Transp. Sci. 55(1), 75–100 (2021). https://doi.org/10.1287/trsc.2020.1000

    Article  Google Scholar 

  15. Voccia, S.A., Campbell, A.M., Thomas, B.W.: The same-day delivery problem for online purchases. Transp. Sci. 53(1), 167–184 (2019). https://doi.org/10.1287/trsc.2016.0732

    Article  Google Scholar 

  16. Yildiz, B., Savelsbergh, M.: Provably high-quality solutions for the meal delivery routing problem. Transp. Sci. 53(5), 1372–1388 (2019). https://doi.org/10.1287/trsc.2018.0887

    Article  Google Scholar 

  17. Yildiz, B., Savelsbergh, M.: Service and capacity planning in crowd-sourced delivery. Transport. Res. Part C: Emerg. Technol. 100, 177–199 (2019). https://doi.org/10.1016/j.trc.2019.01.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kondratov .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 6 represents average results of models on 100 evaluations. Parameters are as follows: \(num_{couriers} = 10, max_{time} = 15, num_{rest} = 5, num_{orders} = 80\). This implies a fairly large number of orders in a short period of time.

Table 6. Model performance comparison

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kondratov, P., Tarasova, E. (2024). Optimizing Food Delivery Efficiency: The Impact of Order Aggregation and Courier Assignment Strategies. In: Pereira, A.I., et al. Optimization, Learning Algorithms and Applications. OL2A 2024. Communications in Computer and Information Science, vol 2281. Springer, Cham. https://doi.org/10.1007/978-3-031-77432-4_4

Download citation

Publish with us

Policies and ethics