Abstract
The increase in urban population translates into denser urban traffic and, in turn, more environmental pollution. By taking advantage of the high level of sensorisation in smart cities, pollution levels can be monitored in real time, thus helping citizens to make informed decisions. In this research, we propose a healthy routing system. For this purpose, we estimate the pollution dispersion in the urban area from traffic intensity data. Then, the fastest walking route for a given trip is calculated. This route is evaluated with respect to the pollution that a pedestrian would be exposed to by completing it at a certain time. Finally, the system proposes alternative routes to avoid streets with a higher accumulation of harmful particles. The results demonstrate the feasibility of our proposal for the creation of healthy routes and, furthermore, the usefulness of the system as a real-time pollution estimator.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Full report can be found at https://unhabitat.org/wcr/.
- 2.
PyKrige documentation https://pykrige.readthedocs.io.
- 3.
- 4.
- 5.
Conselleria de Medi Ambient, Infraestructures i Territori. https://mediambient.gva.es/va/web/calidad-ambiental/datos-on-line.
References
Ramírez, A.S., Ramondt, S., Van Bogart, K., Perez-Zuniga, R.: Public awareness of air pollution and health threats: challenges and opportunities for communication strategies to improve environmental health literacy. J. Health Commun. 24(1), 75–83 (2019). https://doi.org/10.1080/10810730.2019.1574320. pMID: 30730281
Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)
Alvarado-Molina, M., et al.: Improving traffic-related air pollution estimates by modelling minor road traffic volumes. Environ. Pollut. 338, 122657 (2023). https://doi.org/10.1016/j.envpol.2023.122657
Casino, F., Patsakis, C., Batista, E., Borràs, F., Martínez-Balleste, A.: Healthy routes in the smart city: a context-aware mobile recommender. IEEE Softw. 34(6), 42–47 (2017). https://doi.org/10.1109/MS.2017.4121209
Chen, J.: Mitigating nitrogen dioxide air pollution: the roles and effect of national smart city pilots in China. Energy 263, 125652 (2023). https://doi.org/10.1016/j.energy.2022.125652
Gao, L.N., et al.: A short-distance healthy route planning approach. J. Transport Health 24, 101314 (2022). https://doi.org/10.1016/j.jth.2021.101314. https://www.sciencedirect.com/science/article/pii/S2214140521003443
Ilarri, S., Trillo-Lado, R., Marrodán, L.: Traffic and pollution modelling for air quality awareness: an experience in the city of Zaragoza. SN Comput. Sci. 3(4), 281 (2022)
Li, X., et al.: Mortality burden due to ambient nitrogen dioxide pollution in China: application of high-resolution models. Environ. Int. 176, 107967 (2023). https://doi.org/10.1016/j.envint.2023.107967
Ma, X., Longley, I., Gao, J., Salmond, J.: Evaluating the effect of ambient concentrations, route choices, and environmental (in) justice on students’ dose of ambient NO2 while walking to school at population scales. Environ. Sci. Technol. 54(20), 12908–12919 (2020)
Montero, J.M., Calderón, G.F.A.: Functional kriging prediction of pollution series: the geostatistical alternative for spatially-fixed data. Estudios de economía aplicada 33(1), 145–174 (2015)
Nicolas, J.P.: Analysing road traffic influences on air pollution: how to achieve sustainable urban development. Transp. Rev. 20(2), 219–232 (2000). https://doi.org/10.1080/014416400295266
Ntziachristos, L., Samaras, Z.: EMEP/EEA air pollutant emission inventory guidebook 2023 (2023). https://copert.emisia.com/wp-content/uploads/2024/07/1.A.3.b.i-iv-Road-transport-2024.pdf
Sofia, D., Gioiella, F., Lotrecchiano, N., Giuliano, A.: Mitigation strategies for reducing air pollution. Environ. Sci. Pollut. Res. 27(16), 19226–19235 (2020). https://doi.org/10.1007/s11356-020-08647-x
Wang, P., et al.: Aggravated air pollution and health burden due to traffic congestion in urban China. Atmos. Chem. Phys. 23(5), 2983–2996 (2023). https://doi.org/10.5194/acp-23-2983-2023
Van Zoest, V., Osei, F. B., Hoek, G., Stein, A.: Spatio-temporal regression kriging for modelling urban NO2 concentrations. Int. J. Geographical Inf. Sci. 34(5), 851–865 (2020). https://doi.org/10.1080/13658816.2019.1667501
Zou, B., Li, S., Zheng, Z., Zhan, B.F., Yang, Z., Wan, N.: Healthier routes planning: a new method and online implementation for minimizing air pollution exposure risk. Comput. Environ. Urban Syst. 80, 101456 (2020). https://doi.org/10.1016/j.compenvurbsys.2019.101456
Acknowledgements
This work is partially funded by the Spanish Ministry of Science and Innovation under the project PID2021-123673OB-C31 and project PID2021-124975OB-I00, project TED2021-131295B-C32 from the State Research Agency, and DIGITAL2022 CLOUDAI02/S8760000 from the European Commission. Jaume Jordán is supported by the IJC2020-045683-I grant funded by MCIN/AEI/10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nadal, S., Jordán, J., Sanchez-Anguix, V., Alberola, J.M., Julián, V., Botti, V. (2025). Optimizing Pedestrian Paths to Minimize Exposure to Urban Pollution Through Traffic Data Analysis. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15347. Springer, Cham. https://doi.org/10.1007/978-3-031-77738-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-77738-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77737-0
Online ISBN: 978-3-031-77738-7
eBook Packages: Computer ScienceComputer Science (R0)