Skip to main content

Optimizing Pedestrian Paths to Minimize Exposure to Urban Pollution Through Traffic Data Analysis

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2024 (IDEAL 2024)

Abstract

The increase in urban population translates into denser urban traffic and, in turn, more environmental pollution. By taking advantage of the high level of sensorisation in smart cities, pollution levels can be monitored in real time, thus helping citizens to make informed decisions. In this research, we propose a healthy routing system. For this purpose, we estimate the pollution dispersion in the urban area from traffic intensity data. Then, the fastest walking route for a given trip is calculated. This route is evaluated with respect to the pollution that a pedestrian would be exposed to by completing it at a certain time. Finally, the system proposes alternative routes to avoid streets with a higher accumulation of harmful particles. The results demonstrate the feasibility of our proposal for the creation of healthy routes and, furthermore, the usefulness of the system as a real-time pollution estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Full report can be found at https://unhabitat.org/wcr/.

  2. 2.

    PyKrige documentation https://pykrige.readthedocs.io.

  3. 3.

    https://valencia.opendatasoft.com.

  4. 4.

    https://www.dgt.es/menusecundario/dgt-en-cifras/.

  5. 5.

    Conselleria de Medi Ambient, Infraestructures i Territori. https://mediambient.gva.es/va/web/calidad-ambiental/datos-on-line.

References

  1. Ramírez, A.S., Ramondt, S., Van Bogart, K., Perez-Zuniga, R.: Public awareness of air pollution and health threats: challenges and opportunities for communication strategies to improve environmental health literacy. J. Health Commun. 24(1), 75–83 (2019). https://doi.org/10.1080/10810730.2019.1574320. pMID: 30730281

  2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019)

    Google Scholar 

  3. Alvarado-Molina, M., et al.: Improving traffic-related air pollution estimates by modelling minor road traffic volumes. Environ. Pollut. 338, 122657 (2023). https://doi.org/10.1016/j.envpol.2023.122657

    Article  Google Scholar 

  4. Casino, F., Patsakis, C., Batista, E., Borràs, F., Martínez-Balleste, A.: Healthy routes in the smart city: a context-aware mobile recommender. IEEE Softw. 34(6), 42–47 (2017). https://doi.org/10.1109/MS.2017.4121209

    Article  Google Scholar 

  5. Chen, J.: Mitigating nitrogen dioxide air pollution: the roles and effect of national smart city pilots in China. Energy 263, 125652 (2023). https://doi.org/10.1016/j.energy.2022.125652

    Article  Google Scholar 

  6. Gao, L.N., et al.: A short-distance healthy route planning approach. J. Transport Health 24, 101314 (2022). https://doi.org/10.1016/j.jth.2021.101314. https://www.sciencedirect.com/science/article/pii/S2214140521003443

  7. Ilarri, S., Trillo-Lado, R., Marrodán, L.: Traffic and pollution modelling for air quality awareness: an experience in the city of Zaragoza. SN Comput. Sci. 3(4), 281 (2022)

    Article  Google Scholar 

  8. Li, X., et al.: Mortality burden due to ambient nitrogen dioxide pollution in China: application of high-resolution models. Environ. Int. 176, 107967 (2023). https://doi.org/10.1016/j.envint.2023.107967

    Article  Google Scholar 

  9. Ma, X., Longley, I., Gao, J., Salmond, J.: Evaluating the effect of ambient concentrations, route choices, and environmental (in) justice on students’ dose of ambient NO2 while walking to school at population scales. Environ. Sci. Technol. 54(20), 12908–12919 (2020)

    Article  Google Scholar 

  10. Montero, J.M., Calderón, G.F.A.: Functional kriging prediction of pollution series: the geostatistical alternative for spatially-fixed data. Estudios de economía aplicada 33(1), 145–174 (2015)

    Google Scholar 

  11. Nicolas, J.P.: Analysing road traffic influences on air pollution: how to achieve sustainable urban development. Transp. Rev. 20(2), 219–232 (2000). https://doi.org/10.1080/014416400295266

    Article  Google Scholar 

  12. Ntziachristos, L., Samaras, Z.: EMEP/EEA air pollutant emission inventory guidebook 2023 (2023). https://copert.emisia.com/wp-content/uploads/2024/07/1.A.3.b.i-iv-Road-transport-2024.pdf

  13. Sofia, D., Gioiella, F., Lotrecchiano, N., Giuliano, A.: Mitigation strategies for reducing air pollution. Environ. Sci. Pollut. Res. 27(16), 19226–19235 (2020). https://doi.org/10.1007/s11356-020-08647-x

    Article  Google Scholar 

  14. Wang, P., et al.: Aggravated air pollution and health burden due to traffic congestion in urban China. Atmos. Chem. Phys. 23(5), 2983–2996 (2023). https://doi.org/10.5194/acp-23-2983-2023

    Article  Google Scholar 

  15. Van Zoest, V., Osei, F. B., Hoek, G., Stein, A.: Spatio-temporal regression kriging for modelling urban NO2 concentrations. Int. J. Geographical Inf. Sci. 34(5), 851–865 (2020). https://doi.org/10.1080/13658816.2019.1667501

  16. Zou, B., Li, S., Zheng, Z., Zhan, B.F., Yang, Z., Wan, N.: Healthier routes planning: a new method and online implementation for minimizing air pollution exposure risk. Comput. Environ. Urban Syst. 80, 101456 (2020). https://doi.org/10.1016/j.compenvurbsys.2019.101456

Download references

Acknowledgements

This work is partially funded by the Spanish Ministry of Science and Innovation under the project PID2021-123673OB-C31 and project PID2021-124975OB-I00, project TED2021-131295B-C32 from the State Research Agency, and DIGITAL2022 CLOUDAI02/S8760000 from the European Commission. Jaume Jordán is supported by the IJC2020-045683-I grant funded by MCIN/AEI/10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Nadal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nadal, S., Jordán, J., Sanchez-Anguix, V., Alberola, J.M., Julián, V., Botti, V. (2025). Optimizing Pedestrian Paths to Minimize Exposure to Urban Pollution Through Traffic Data Analysis. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15347. Springer, Cham. https://doi.org/10.1007/978-3-031-77738-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77738-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77737-0

  • Online ISBN: 978-3-031-77738-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics