Skip to main content

Smart Sign Language Decoder

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2024 (IDEAL 2024)

Abstract

Sign language recognition and understanding are challenging tasks for many people who are not familiar with it, which limits communication between deaf-mute people and others. The system presented in this paper lowers the communication barrier, introducing an automatic translation layer that facilitates sign language understanding. The system uses a deep-learning model for sign language detection and a separate library for hand joint mapping. The application’s architecture was designed to allow users to access the system from desktop and mobile devices. The model’s results revealed an 82% accuracy, and after several tweaks on the activation function in our tests, we achieved perfect classification in our real word tests. The results of the system offered excellent accuracy, and its usability lowers the communication barrier between people, providing flexibility as the application is available for any device with a browser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/CostescuMarius/Hand-Gesture-Recognition.git.

References

  1. Adeyanju, I.A., Bello, O.O., Adegboye, M.A.: Machine learning methods for sign language recognition: a critical review and analysis. Intell. Syst. Appl. 12, 200056 (2021)

    Google Scholar 

  2. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021)

    Article  Google Scholar 

  3. Arruda, H., Silva, E.R., Lessa, M., Proença Jr., D., Bartholo, R.: Vosviewer and bibliometrix. J. Med. Libr. Assoc.: JMLA 110(3), 392 (2022)

    Google Scholar 

  4. Bantupalli, K., Xie, Y.: American sign language recognition using deep learning and computer vision. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 4896–4899. IEEE (2018)

    Google Scholar 

  5. Han, J., Shao, L., Xu, D., Shotton, J.: Enhanced computer vision with Microsoft kinect sensor: a review. IEEE Trans. Cybern. 43(5), 1318–1334 (2013)

    Article  Google Scholar 

  6. Larose, D.T., Larose, C.D.: k-nearest neighbor algorithm (2014)

    Google Scholar 

  7. Pang, B., Nijkamp, E., Wu, Y.N.: Deep learning with TensorFlow: a review. J. Educ. Behav. Stat. 45(2), 227–248 (2020)

    Article  Google Scholar 

  8. Pathan, R.K., Biswas, M., Yasmin, S., Khandaker, M.U., Salman, M., Youssef, A.A.: Sign language recognition using the fusion of image and hand landmarks through multi-headed convolutional neural network. Sci. Rep. 13(1), 16975 (2023)

    Article  Google Scholar 

  9. Rajasekhar, N., Yadav, M.G., Vedantam, C., Pellakuru, K., Navapete, C.: Sign language recognition using machine learning algorithm. In: 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), pp. 303–306. IEEE (2023)

    Google Scholar 

  10. Rastgoo, R., Kiani, K., Escalera, S.: Sign language recognition: a deep survey. Expert Syst. Appl. 164, 113794 (2021)

    Article  Google Scholar 

  11. Sherstinsky, A.: Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D 404, 132306 (2020)

    Article  MathSciNet  Google Scholar 

  12. Srivastava, S., Gangwar, A., Mishra, R., Singh, S.: Sign language recognition system using TensorFlow object detection API. In: Woungang, I., Dhurandher, S.K., Pattanaik, K.K., Verma, A., Verma, P. (eds.) ANTIC 2021. CCIS, vol. 1534, pp. 634–646. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-96040-7_48

    Chapter  Google Scholar 

  13. Zhang, F., et al.: Mediapipe hands: on-device real-time hand tracking. arXiv preprint arXiv:2006.10214 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Cristian Mihăescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costescu, C.M., Popescu, P.Ş., Mihăescu, M.C. (2025). Smart Sign Language Decoder. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15347. Springer, Cham. https://doi.org/10.1007/978-3-031-77738-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77738-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77737-0

  • Online ISBN: 978-3-031-77738-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics