Skip to main content

Evaluative Customized Naïve Associative Classifier: Promoting Equity in AI for the Selection and Promotion of Human Resources

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2024 (IDEAL 2024)

Abstract

Fairness and bias in AI for human resource selection and promotion are complex issues that require careful and continued attention. While AI has the potential to improve equity by eliminating subjective human bias, it also presents significant risks if inherent biases in data and algorithms are not adequately addressed. By prioritizing equity, transparency and diversity, we can harness the power of AI to promote fairer and more inclusive work environments. This article introduces the Evaluative Customized Naïve Associative Classifier as an alternative to promote equity and transparency in the automatic selection and promotion processes of human resources. The results obtained support the viability of the proposal within the Evaluative Artificial Intelligence approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palos-Sánchez, P.R., Baena-Luna, P., Badicu, A., Infante-Moro, J.C.: Artificial intelligence and human resources management: a bibliometric analysis. Appl. Artif. Intell. 36, 2145631 (2022)

    Article  Google Scholar 

  2. Barocas, S., Hardt, M., Narayanan, A.: Fairness and machine learning: limitations and opportunities. MIT Press (2023)

    Google Scholar 

  3. Consuegra-Ayala, J.P., Gutiérrez, Y., Almeida-Cruz, Y., Palomar, M.: Automatic annotation of protected attributes to support fairness optimization. Inf. Sci. 120188 (2024)

    Google Scholar 

  4. Lytton, C.: AI hiring tools may be filtering out the best job applicants. BBC (2024)

    Google Scholar 

  5. Miller, T.: Explainable AI is dead, long live explainable AI! hypothesis-driven decision support using evaluative AI. In: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, pp. 333–342 (2023)

    Google Scholar 

  6. Le, T., Miller, T., Singh, R., Sonenberg, L.: Towards the new XAI: A Hypothesis-Driven Approach to Decision Support Using Evidence. arXiv preprint arXiv:.01292 (2024)

    Google Scholar 

  7. Liu, J., Wang, T., Li, J., Huang, J., Yao, F., He, R.: A data-driven analysis of employee promotion: the role of the position of organization. In: IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 4056–4062. IEEE (Year)

    Google Scholar 

  8. Dlugatch, R., Georgieva, A., Kerasidou, A.: Trustworthy artificial intelligence and ethical design: public perceptions of trustworthiness of an AI-based decision-support tool in the context of intrapartum care. BMC Med. Ethics 24, 42 (2023)

    Article  Google Scholar 

  9. Ochmann, J., Michels, L., Tiefenbeck, V., Maier, C., Laumer, S.: Perceived algorithmic fairness: an empirical study of transparency and anthropomorphism in algorithmic recruiting. Inf. Syst. J. (2024)

    Google Scholar 

  10. Tusell-Rey, C.C., Camacho-Nieto, O., Yáñez-Márquez, C., Villuendas-Rey, Y., Tejeida-Padilla, R., Rey-Benguría, C.F.: A priori determining the performance of the customized naïve associative classifier for business data classification based on data complexity measures. Mathematics 10, 2740 (2022)

    Article  Google Scholar 

  11. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif. Intell. Res. 6, 1–34 (1997)

    Article  MathSciNet  Google Scholar 

  12. Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1–38 (2019)

    Article  MathSciNet  Google Scholar 

  13. Camacho-Urriolagoitia, F.J., Villuendas-Rey, Y., Yáñez-Márquez, C., Lytras, M.: Novel features and neighborhood complexity measures for multiclass classification of hybrid data. Sustainability 15, 1995 (2023)

    Article  Google Scholar 

  14. https://www.kaggle.com/shivan118/hranalysis?select=train.csv

  15. Moreno-Torres, J., García-Sáez, J.A., Herrera, F.: Study on the impact of partition-induced dataset shift on k-fold cross-validation. IEEE Trans. Neural Networks Learn. Syst. 23, 1304–1312 (2012)

    Article  Google Scholar 

  16. Triguero, I., et al.: KEEL 3.0: an open source software for multi-stage analysis in data mining. J. Int. J. Comput. Intell. Syst. 10, 1238–1249 (2017)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Instituto Politécnico Nacional (Secretaría Académica, Secretaría de Investigación y Posgrado, Centro de Investigación en Computación, and Centro de Innovación y Desarrollo Tecnológico en Cómputo), the Consejo Nacional de Ciencia y Tecnología, and Sistema Nacional de Investigadores for their support to develop this work. The authors would also want to thank Mondragon Unibertsitatea, Faculty of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yenny Villuendas-Rey .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests.

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tusell-Rey, C.C., Pino-Gómez, J., Villuendas-Rey, Y. (2025). Evaluative Customized Naïve Associative Classifier: Promoting Equity in AI for the Selection and Promotion of Human Resources. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15347. Springer, Cham. https://doi.org/10.1007/978-3-031-77738-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77738-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77737-0

  • Online ISBN: 978-3-031-77738-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics