Abstract
This study addresses battery failure in motorized wheelchairs, which are essential for the mobility of individuals with disabilities. The main objective was to concept a comprehensive Dataset comprising six attributes that directly impact battery life, consisting of 498 instances. Using the Random Forest algorithm, we demonstrate the ability to accurately predict battery failures. The results highlight the necessity for proactive measures to prevent battery degradation and extend its lifespan.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alanazi, F.: Electric vehicles: benefits, challenges, and potential solutions for widespread adaptation. Appl. Sci. 13(10) (2023). https://doi.org/10.3390/app13106016
Mhatre, A., Loew, C., Yurtsever, E., Mair, C.: Power wheelchair usage and repair are associated: a retrospective analysis. Disabil. Rehabil. Assist. Technol., 1–8 (2024). https://doi.org/10.1080/17483107.2024.2353861. pMID: 38754034
Azad, A., Tavakoli, R., Pratik, U., Varghese, B., Coopmans, C., Pantic, Z.: A smart autonomous wpt system for electric wheelchair applications with free-positioning charging feature. IEEE J. Emerg. Sel. Topics Power Electron. (2018). https://doi.org/10.1109/JESTPE.2018.2884887
Belmokhtar, K., Ibrahim, H., Féger, Z., Ghandour, M.: Charge equalization systems for serial valve regulated lead-acid (vrla) connected batteries in hybrid power systems applications. Energy Procedia 99, 277–284 (2016). https://doi.org/10.1016/j.egypro.2016.10.117. https://www.sciencedirect.com/science/article/pii/S1876610216310785
Bennehalli, B., et al.: Machine learning approach to battery management and balancing techniques for enhancing electric vehicle battery performance. J. Electr. Syst. 20, 885–892 (2024). https://doi.org/10.52783/jes.1685
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Chang, Y., et al.: A survey on evaluation of large language models. ACM Trans. Intell. Syst. Technol. 15(3), 1–45 (2024)
Dzafic, D., Candiotti, J., Cooper, R.: Improving wheelchair route planning through instrumentation and navigation systems, vol. 2020, pp. 5737–5740 (2020). https://doi.org/10.1109/EMBC44109.2020.9176481
Eckert, J.J., Santiciolli, F.M., dos Santos Costa, E., Merege, M.R., Dedini, F.G.: Influence of the tires pressure in the vehicle fuel consumption. In: VIII National Mechanical Engineering Congress, Uberlândia, Brasil (2014)
Han, X., et al.: A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 1, 100005 (2019). https://doi.org/10.1016/j.etran.2019.100005. https://www.sciencedirect.com/science/article/pii/S2590116819300050
Morgan, K.A., Engsberg, J.R., Gray, D.B.: Important wheelchair skills for new manual wheelchair users: health care professional and wheelchair user perspectives. Disabil. Rehabil. Assist. Technol. 12(1), 28–38 (2017). https://doi.org/10.3109/17483107.2015.1063015. pMID: 26138222
Olaoye, G., Jen, A., Potter, K.: Control strategies for battery chargers: optimizing charging efficiency and battery performance (2024)
Pearson, K.: Notes on regression and inheritance in the case of two parents, vol. 58 (1895). https://doi.org/10.1098/rspl.1895.0041
Roh, Y., Heo, G., Whang, S.E.: A survey on data collection for machine learning: a big data-ai integration perspective. IEEE Trans. Knowl. Data Eng. 33(4), 1328–1347 (2019)
Silva, R.L.: Desenvolvimento de uma interface homem-máquina aplicada a uma cadeira de rodas robótica por meio de pda. Universidade Federal do Espírito Santo (2007)
Teixeira, A.C.B., et al.: Deficiência & os desafios para uma sociedade inclusiva, vol. 1. Editora Foco (2022)
Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)
Xiong, R., Sun, W., Yu, Q., Sun, F.: Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles. Appl. Energy 279, 115855 (2020). https://doi.org/10.1016/j.apenergy.2020.115855. https://www.sciencedirect.com/science/article/pii/S0306261920313301
Zeng, X., Li, M., Abd El-Hady, D., Alshitari, W., Al-Bogami, A.S., Lu, J., Amine, K.: Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 9(27), 1900161 (2019). https://doi.org/10.1002/aenm.201900161. https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201900161
Zhao, G., Wang, X., Negnevitsky, M.: Connecting battery technologies for electric vehicles from battery materials to management. iScience 25(2), 103744 (2022). https://doi.org/10.1016/j.isci.2022.103744. https://www.sciencedirect.com/science/article/pii/S2589004222000141
Acknoledgements
The authors would like to than Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul - FAPERGRS (24/2551-0001396-2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq with FAPERGS/CNPq (23/2551-0000126-8).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Manzolli, W.M., Rickes, T.B., Lucca, G., Oliveira, L.d.S., Yamin, A.C. (2025). A New Dataset for Analyzing Battery Failures in Wheelchairs. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15347. Springer, Cham. https://doi.org/10.1007/978-3-031-77738-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-77738-7_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77737-0
Online ISBN: 978-3-031-77738-7
eBook Packages: Computer ScienceComputer Science (R0)