Skip to main content

A New Dataset for Analyzing Battery Failures in Wheelchairs

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2024 (IDEAL 2024)

Abstract

This study addresses battery failure in motorized wheelchairs, which are essential for the mobility of individuals with disabilities. The main objective was to concept a comprehensive Dataset comprising six attributes that directly impact battery life, consisting of 498 instances. Using the Random Forest algorithm, we demonstrate the ability to accurately predict battery failures. The results highlight the necessity for proactive measures to prevent battery degradation and extend its lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alanazi, F.: Electric vehicles: benefits, challenges, and potential solutions for widespread adaptation. Appl. Sci. 13(10) (2023). https://doi.org/10.3390/app13106016

  2. Mhatre, A., Loew, C., Yurtsever, E., Mair, C.: Power wheelchair usage and repair are associated: a retrospective analysis. Disabil. Rehabil. Assist. Technol., 1–8 (2024). https://doi.org/10.1080/17483107.2024.2353861. pMID: 38754034

  3. Azad, A., Tavakoli, R., Pratik, U., Varghese, B., Coopmans, C., Pantic, Z.: A smart autonomous wpt system for electric wheelchair applications with free-positioning charging feature. IEEE J. Emerg. Sel. Topics Power Electron. (2018). https://doi.org/10.1109/JESTPE.2018.2884887

  4. Belmokhtar, K., Ibrahim, H., Féger, Z., Ghandour, M.: Charge equalization systems for serial valve regulated lead-acid (vrla) connected batteries in hybrid power systems applications. Energy Procedia 99, 277–284 (2016). https://doi.org/10.1016/j.egypro.2016.10.117. https://www.sciencedirect.com/science/article/pii/S1876610216310785

  5. Bennehalli, B., et al.: Machine learning approach to battery management and balancing techniques for enhancing electric vehicle battery performance. J. Electr. Syst. 20, 885–892 (2024). https://doi.org/10.52783/jes.1685

  6. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  7. Chang, Y., et al.: A survey on evaluation of large language models. ACM Trans. Intell. Syst. Technol. 15(3), 1–45 (2024)

    Article  Google Scholar 

  8. Dzafic, D., Candiotti, J., Cooper, R.: Improving wheelchair route planning through instrumentation and navigation systems, vol. 2020, pp. 5737–5740 (2020). https://doi.org/10.1109/EMBC44109.2020.9176481

  9. Eckert, J.J., Santiciolli, F.M., dos Santos Costa, E., Merege, M.R., Dedini, F.G.: Influence of the tires pressure in the vehicle fuel consumption. In: VIII National Mechanical Engineering Congress, Uberlândia, Brasil (2014)

    Google Scholar 

  10. Han, X., et al.: A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation 1, 100005 (2019). https://doi.org/10.1016/j.etran.2019.100005. https://www.sciencedirect.com/science/article/pii/S2590116819300050

  11. Morgan, K.A., Engsberg, J.R., Gray, D.B.: Important wheelchair skills for new manual wheelchair users: health care professional and wheelchair user perspectives. Disabil. Rehabil. Assist. Technol. 12(1), 28–38 (2017). https://doi.org/10.3109/17483107.2015.1063015. pMID: 26138222

  12. Olaoye, G., Jen, A., Potter, K.: Control strategies for battery chargers: optimizing charging efficiency and battery performance (2024)

    Google Scholar 

  13. Pearson, K.: Notes on regression and inheritance in the case of two parents, vol. 58 (1895). https://doi.org/10.1098/rspl.1895.0041

  14. Roh, Y., Heo, G., Whang, S.E.: A survey on data collection for machine learning: a big data-ai integration perspective. IEEE Trans. Knowl. Data Eng. 33(4), 1328–1347 (2019)

    Article  Google Scholar 

  15. Silva, R.L.: Desenvolvimento de uma interface homem-máquina aplicada a uma cadeira de rodas robótica por meio de pda. Universidade Federal do Espírito Santo (2007)

    Google Scholar 

  16. Teixeira, A.C.B., et al.: Deficiência & os desafios para uma sociedade inclusiva, vol. 1. Editora Foco (2022)

    Google Scholar 

  17. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)

    Google Scholar 

  18. Xiong, R., Sun, W., Yu, Q., Sun, F.: Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles. Appl. Energy 279, 115855 (2020). https://doi.org/10.1016/j.apenergy.2020.115855. https://www.sciencedirect.com/science/article/pii/S0306261920313301

  19. Zeng, X., Li, M., Abd El-Hady, D., Alshitari, W., Al-Bogami, A.S., Lu, J., Amine, K.: Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 9(27), 1900161 (2019). https://doi.org/10.1002/aenm.201900161. https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201900161

  20. Zhao, G., Wang, X., Negnevitsky, M.: Connecting battery technologies for electric vehicles from battery materials to management. iScience 25(2), 103744 (2022). https://doi.org/10.1016/j.isci.2022.103744. https://www.sciencedirect.com/science/article/pii/S2589004222000141

Download references

Acknoledgements

The authors would like to than Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul - FAPERGRS (24/2551-0001396-2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq with FAPERGS/CNPq (23/2551-0000126-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Manzolli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manzolli, W.M., Rickes, T.B., Lucca, G., Oliveira, L.d.S., Yamin, A.C. (2025). A New Dataset for Analyzing Battery Failures in Wheelchairs. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15347. Springer, Cham. https://doi.org/10.1007/978-3-031-77738-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77738-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77737-0

  • Online ISBN: 978-3-031-77738-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics