Abstract
Systems based on artificial intelligence have become prominent in nearly all domains. However, knowledge of the inner workings of these intelligent systems is not as widespread, partly because the associated issues have been discussed only to a limited extent in computer science education. In order to gain an overview of AI in curricula and to see what competencies teachers need to teach this content, the AI-related content of the computer science curricula of the German federal states was analysed and compared with existing approaches. Proposals for further training courses are derived from this to enable teachers to teach AI competently.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abedjan, Z., et al.: Empfehlungen für Masterstudiengänge “Data Science” –auf Basis eines Bachelors in (Wirtschafts-) Informatik oder Mathematik. Gesellschaft für Informatik e.V. (2021)
Anderson, L.W., Krathwohl, D.R., et al.: A taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Addison Wesley Longman, New York (2001)
Anderson, P., Bowring, J., McCauley, R., Pothering, G., Starr, C.: An undergraduate degree in data science: curriculum and a decade of implementation experience. In: Proceedings of the 45th ACM Technical Symposium on Computer Science Education, pp. 145–150 (2014)
Biggs, J.: Enhancing teaching through constructive alignment. High. Educ. 32(3), 347–364 (1996)
Brinda, T., et al.: Dagstuhl-Erklärung: Bildung in der digitalen vernetzten Welt. Gesellschaft für Informatik e.V. (2016)
Clear, A., et al.: Computing curricula 2020. Technical report. ACM/IEEE, New York (2020). https://www.acm.org/education/curricula-recommendations
Conti, M., Di Pietro, R., Mancini, L.V., Mei, A.: (old) distributed data source verification in wireless sensor networks. Inf. Fusion 10(4), 342–353 (2009). https://doi.org/10.1016/j.inffus.2009.01.002
De Veaux, R.D., et al.: Curriculum guidelines for undergraduate programs in data science. Annu. Rev. Stat. Appl. 4(1), 15–30 (2017)
EDISON Project: Edison: Building the data science profession (2023). https://edison-project.eu/
GI, Gesellschaft für Informatik e.V.: Bildungsstandards informatik (2019). https://informatikstandards.de/standards/operatoren
Heinemann, B., et al.: Drafting a data science curriculum for secondary schools. In: Proceedings of the 18th Koli Calling International Conference on Computing Education Research, Koli Calling 2018. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3279720.3279737
Jetzinger, F., Baumer, S., Michaeli, T.: Artificial intelligence in compulsory k-12 computer science classrooms: a scalable professional development offer for computer science teachers. In: Proceedings of the 55th ACM Technical Symposium on Computer Science Education, SIGCSE 2024, vol. 1, pp. 590–596. Association for Computing Machinery, New York (2024). https://doi.org/10.1145/3626252.3630782
Lorenz, U., Romeike, R.: What is AI-pack? - outline of AI competencies for teaching with DPACK. In: Pellet, J.P., Parriaux, G. (eds.) ISSEP 2023. LNCS, vol. 14296, pp. 13–25. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44900-0_2
Michaeli, T., Romeike, R., Seegerer, S.: What students can learn about artificial intelligence-recommendations for k-12 computing education. In: Keane, T., Lewin, C., Brinda, T., Bottino, R. (eds.) WCCE 2022. IFIP Advances in Information and Communication Technology, vol. 685, pp. 196–208. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-43393-1_19
Olari, V., et al.: Introduction of artificial intelligence literacy and data literacy in computer science teacher education. In: Proceedings of the 23rd Koli Calling International Conference on Computing Education Research, Koli Calling 2023. Association for Computing Machinery, New York (2024). https://doi.org/10.1145/3631802.3631851
Zhang, Y.: New advances in machine learning. BoD–Books on Demand (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Opel, S., Linxen, A., Beecks, C. (2025). What Students Should Learn and Teachers Must Know About Artificial Intelligence. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15347. Springer, Cham. https://doi.org/10.1007/978-3-031-77738-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-77738-7_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77737-0
Online ISBN: 978-3-031-77738-7
eBook Packages: Computer ScienceComputer Science (R0)