Skip to main content

Noise Tolerance and Robustness Ranking in Machine Learning Models

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2024 (IDEAL 2024)

Abstract

Machine Learning models often excel in controlled environments but may struggle with noisy, incomplete, or shifted real-world data. Ensuring that these models maintain high performance despite these imperfections is crucial for practical applications, such as medical diagnosis or autonomous driving. This paper introduces a novel framework to systematically analyse the robustness of Machine Learning models against noisy data. We propose two empirical methods: (1) Noise Tolerance Estimation, which calculates the noise level a model can withstand without significant degradation in performance, and (2) Robustness Ranking, which ranks Machine Learning models by their robustness at specific noise levels. Utilizing Cohen’s kappa statistic, we measure the consistency between a model’s predictions on original and perturbed datasets. Our methods are demonstrated using various datasets and Machine Learning techniques, identifying models that maintain reliability under noisy conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For comparison purposes, we disregard the class label, acknowledging that noise may alter an instance’s true class.

References

  1. Arslan, M., Guzel, M., Demirci, M., Ozdemir, S.: Smote and gaussian noise based sensor data augmentation. In: 2019 4th International Conference on Computer Science and Engineering (UBMK), pp. 1–5. IEEE (2019)

    Google Scholar 

  2. Braun, S., Neil, D., Liu, S.C.: A curriculum learning method for improved noise robustness in automatic speech recognition. In: 2017 25th EUSIPCO, pp. 548–552. IEEE (2017)

    Google Scholar 

  3. Fabra-Boluda, R., Ferri, C., Ramírez-Quintana, M., Martínez-Plumed, F.: Unveiling the robustness of machine learning families. Mach. Learn.: Sci. Technol. (2024). http://iopscience.iop.org/article/10.1088/2632-2153/ad62ab

  4. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? JMLR 15(1), 3133–3181 (2014)

    MathSciNet  Google Scholar 

  5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: 3rd Intenational Conference on Learning, Representations, ICLR (2015). http://arxiv.org/abs/1412.6572

  6. Hendrycks, D., et al.: The many faces of robustness: a critical analysis of out-of-distribution generalization. In: Proceedings of the IEEE/CVF ICCV, pp. 8340–8349 (2021)

    Google Scholar 

  7. Kalapanidas, E., Avouris, N., Craciun, M., Neagu, D.: Machine learning algorithms: a study on noise sensitivity. In: 1st Balcan Conference in Informatics, pp. 356–365 (2003)

    Google Scholar 

  8. Landis, R., Koch, G.: An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 363–374 (1977)

    Google Scholar 

  9. Li, J., Xiong, C., Hoi, S.C.: Learning from noisy data with robust representation learning. In: Proceedings of the IEEE/CVF ICCV, pp. 9485–9494 (2021)

    Google Scholar 

  10. Ljunggren, D., Ishii, S.: A comparative analysis of robustness to noise in machine learning classifiers (2021)

    Google Scholar 

  11. Martínez-Plumed, F., Prudêncio, R.B., Martínez-Usó, A., Hernández-Orallo, J.: Item response theory in AI: analysing machine learning classifiers at the instance level. Artif. Intell. 271, 18–42 (2019)

    Article  MathSciNet  Google Scholar 

  12. Molnar, C., Bischl, B., Casalicchio, G.: iml: an R package for interpretable machine learning. JOSS 3(26), 786 (2018)

    Article  Google Scholar 

  13. Ramoni, M., Sebastiani, P.: Robust learning with missing data. Mach. Learn. 45, 147–170 (2001)

    Article  Google Scholar 

  14. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  15. Saberi, M., Azadeh, A., Nourmohammadzadeh, A., Pazhoheshfar, P.: Comparing performance and robustness of SVM and ANN for fault diagnosis in a centrifugal pump. In: 19th International Congress on Modelling and Simulation, pp. 433–439 (2011)

    Google Scholar 

  16. Sáez, J.A., Galar, M., Luengo, J., Herrera, F.: Analyzing the presence of noise in multi-class problems: alleviating its influence with the one-vs-one decomposition. Knowl. Inf. Syst. 38(1), 179–206 (2014)

    Article  Google Scholar 

  17. Sáez, J.A., Luengo, J., Herrera, F.: Evaluating the classifier behavior with noisy data considering performance and robustness: the equalized loss of accuracy measure. Neurocomputing 176, 26–35 (2016)

    Article  Google Scholar 

  18. Subbaswamy, A., Adams, R., Saria, S.: Evaluating model robustness and stability to dataset shift. In: AISTATS, pp. 2611–2619. PMLR (2021)

    Google Scholar 

  19. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. ACM SIGKDD Explor. Newsl. 15(2), 49–60 (2014)

    Article  Google Scholar 

  20. Viera, A.J., Garrett, J.M., et al.: Understanding interobserver agreement: the kappa statistic. Fam. Med. 37(5), 360–363 (2005)

    Google Scholar 

  21. Wu, X., Zhu, X.: Mining with noise knowledge: error-aware data mining. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 38(4), 917–932 (2008)

    Article  Google Scholar 

  22. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell. Rev. 22(3), 177–210 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by CIPROM/2022/6 (FASSLOW) funded by Generalitat Valenciana, FISCALTICS (I+D+i PID2022-140110OA-I00) granted by MICIU/AEI/10.13039/ 501100011033, and Spanish grant PID2021-122830OB-C42 (SFERA) funded by MCIN/AEI/10.13039/ 501100011033 and “ERDF A way of making Europe”. CPF is supported by UPV under FPI grant PAID-01-22.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristina Padró-Ferragut , María José Ramírez-Quintana or Fernando Martínez-Plumed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Padró-Ferragut, C., Ramírez-Quintana, M.J., Martínez-Plumed, F. (2025). Noise Tolerance and Robustness Ranking in Machine Learning Models. In: Julian, V., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2024. IDEAL 2024. Lecture Notes in Computer Science, vol 15347. Springer, Cham. https://doi.org/10.1007/978-3-031-77738-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77738-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77737-0

  • Online ISBN: 978-3-031-77738-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics