Skip to main content

SAM-Glomeruli: Enhanced Segment Anything Model for Precise Glomeruli Segmentation

  • Conference paper
  • First Online:
Medical Optical Imaging and Virtual Microscopy Image Analysis (MOVI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15371))

  • 90 Accesses

Abstract

Chronic kidney disease (CKD) affects a significant portion of the population, necessitating early detection and intervention. In this work, we propose a novel Segment Anything Model-based Glomeruli Segmentation (SAM-Glomeruli) network tailored for Kidney Pathology Image Segmentation (KPIs). First, we adopt the pretrained ViT encoder of the large scale pre-trained Segment Anything Model (SAM) as our backbone to enhance the feature extraction capability of SAM-Glomeruli, providing robust representations for subsequent segmentatlon process. Second, in order to effectively transfer the natural images pre-trained SAM to the medical image domain, we employe Low-Rank Adaptation (LoRA) for efficient fine-tuning of the backbone to enhance its suitability for our specific task. SAM-Glomeruli demonstrates superlor performance, achieving 1st place in the instance detection task of the KPIs challenge. This work contributes to advancing precise pixel-level glomeruli segmentation across diverse CKD models and tissue conditions, potentially improving CKD diagnosis and research. The code is available in https://github.com/jj-ccc/KPIs2024.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bueno, G., Fernandez-Carrobles, M.M., Gonzalez-Lopez, L., Deniz, O.: Glomerulosclerosis identification in whole slide images using semantic segmentation. Comput. Methods Programs Biomed. 184, 105273 (2020)

    Article  Google Scholar 

  2. Chollet, F.: XCeption: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, pp. 424–432. Springer (2016)

    Google Scholar 

  4. Dosovitskiy, A.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  5. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  6. Hörst, F., et al.: CellViT: vision transformers for precise cell segmentation and classification. Med. Image Anal. 94, 103143 (2024)

    Article  MATH  Google Scholar 

  7. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP. In: International Conference on Machine Learning, pp. 2790–2799. PMLR (2019)

    Google Scholar 

  8. Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)

  9. Jia, M., et al.: Visual prompt tuning (2022). https://arxiv.org/abs/2203.12119

  10. Ke, L., et al.: Segment anything in high quality. Adv. Neural Info. Process. Syst. 36 (2024)

    Google Scholar 

  11. Kirillov, A., et al.: Segment anything. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026 (2023)

    Google Scholar 

  12. Li, Z., Li, W., Mai, H., Zhang, T., Xiong, Z.: Enhancing cell detection in histopathology images: a ViT-based U-Net approach. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 150–160. Springer (2023)

    Google Scholar 

  13. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  14. Luo, X., et al.: Comprehensive computational pathological image analysis predicts lung cancer prognosis. J. Thorac. Oncol. 12(3), 501–509 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma, J., et al.: Segment anything in medical images. Nat. Commun. 15(1), 654 (2024)

    Article  MATH  Google Scholar 

  16. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016)

    Article  MATH  Google Scholar 

  17. Mai, H., Sun, R., Zhang, T., Xiong, Z., Wu, F.: DualRel: semi-supervised mitochondria segmentation from a prototype perspective. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19617–19626 (2023)

    Google Scholar 

  18. Ravi, N., et al.: SAM 2: segment anything in images and videos. arXiv preprint arXiv:2408.00714 (2024). https://arxiv.org/abs/2408.00714

  19. Romagnani, P., et al.: Chronic kidney disease. Nat. Rev. Dis. Primers. 3(1), 1–24 (2017)

    Article  MATH  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234–241. Springer (2015)

    Google Scholar 

  21. Sun, R., Li, Y., Zhang, T., Mao, Z., Wu, F., Zhang, Y.: Lesion-aware transformers for diabetic retinopathy grading. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10938–10947 (2021)

    Google Scholar 

  22. Sun, R., Mai, H., Luo, N., Zhang, T., Xiong, Z., Wu, F.: Structure-decoupled adaptive part alignment network for domain adaptive mitochondria segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 523–533. Springer (2023)

    Google Scholar 

  23. Tang, Y., et al.: HoloHisto: end-to-end gigapixel WSI segmentation with 4K resolution sequential tokenization (2024). https://arxiv.org/abs/2407.03307

  24. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: Medical image computing and computer assisted intervention–MICCAI 2021: 24th international conference, Strasbourg, France, September 27–October 1, 2021, proceedings, part I 24, pp. 36–46. Springer (2021)

    Google Scholar 

  25. Vaswani, A.: Attention is all you need. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  26. Wang, S., Yang, D.M., Rong, R., Zhan, X., Xiao, G.: Pathology image analysis using segmentation deep learning algorithms. Am. J. Pathol. 189(9), 1686–1698 (2019)

    Article  MATH  Google Scholar 

  27. Wangkai, L., et al.: MAUNet: modality-aware anti-ambiguity U-Net for multi-modality cell segmentation. In: Competitions in Neural Information Processing Systems, pp. 1–12. PMLR (2023)

    Google Scholar 

  28. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, pp. 3–11. Springer (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhu Zhang .

Editor information

Editors and Affiliations

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y. et al. (2025). SAM-Glomeruli: Enhanced Segment Anything Model for Precise Glomeruli Segmentation. In: Huo, Y., Millis, B.A., Zhou, Y., Younis, K., Wang, X., Tang, Y. (eds) Medical Optical Imaging and Virtual Microscopy Image Analysis. MOVI 2024. Lecture Notes in Computer Science, vol 15371. Springer, Cham. https://doi.org/10.1007/978-3-031-77786-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77786-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77785-1

  • Online ISBN: 978-3-031-77786-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics