Skip to main content

From Feature Maps to Few-Shot Cell Segmentation

  • Conference paper
  • First Online:
Medical Optical Imaging and Virtual Microscopy Image Analysis (MOVI 2024)

Abstract

Deep learning is a potent tool for image segmentation, but it typically demands abundant annotated data for effective training. In scientific domains, such as cell imaging, obtaining annotations for every structure can be prohibitively expensive. Few-shot learning, adapting from one task to another using minimal examples, can alleviate the need for large training data sets. However, there is limited research addressing the particularities of using few-shot learning for cell imaging. Here, we propose a few-shot learning solution designed to be applicable to cell microscopy images. Our method trains feature extractor networks on classes with abundant labelled samples. These feature extractors are then used to generate high-resolution feature maps from the few labelled images of the new class. Finally, we train a perceptron to recombine the feature maps into predicting the new class. On two challenging cell segmentation data sets, we achieve, using five annotated images, Dice scores that are, on average, less than 20% lower than those of networks trained using several hundred annotated images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battiti, R.: First-and second-order methods for learning: between steepest descent and newton’s method. Neural Comput. 4(2), 141–166 (1992)

    Article  MATH  Google Scholar 

  2. Bhatt, C., Kumar, I., Vijayakumar, V., Singh, K.U., Kumar, A.: The state of the art of deep learning models in medical science and their challenges. Multimedia Syst. 27(4), 599–613 (2021)

    Article  MATH  Google Scholar 

  3. Chan, S., Huang, C., Bai, C., Ding, W., Chen, S.: Res2-UNeXt: a novel deep learning framework for few-shot cell image segmentation. Multimedia Tools Appl. 81(10), 13275–13288 (2022)

    Article  Google Scholar 

  4. Dawoud, Y., Ernst, K., Carneiro, G., Belagiannis, V.: Edge-based self-supervision for semi-supervised few-shot microscopy image cell segmentation. In: International Workshop on Medical Optical Imaging and Virtual Microscopy Image Analysis, pp. 22–31. Springer (2022). https://doi.org/10.1007/978-3-031-16961-8_3

  5. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  6. Interactive few-shot learning: limited supervision, better medical image segmentation. IEEE Trans. Med. Imaging 40(10), 2575–2588 (2021)

    Google Scholar 

  7. Fletcher, R.: Practical methods of optimization. John Wiley & Sons (2000)

    Google Scholar 

  8. Graham, S., et al.: Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

    Article  MATH  Google Scholar 

  9. Graham, S., et al.: Lizard: a large-scale dataset for colonic nuclear instance segmentation and classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 684–693 (2021)

    Google Scholar 

  10. Greenwald, N., et al.: Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40(4), 555–565 (2022)

    Article  MATH  Google Scholar 

  11. Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time algorithm for signal analysis with the help of the wavelet transform. In: Wavelets: Time-Frequency Methods and Phase Space Proceedings of the International Conference, Marseille, France, December 14–18, 1987, pp. 286–297. Springer (1990)

    Google Scholar 

  12. Kato, S., Hotta, K.: One-shot and partially-supervised cell image segmentation using small visual prompt. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4294–4303 (2023)

    Google Scholar 

  13. Kavur, A.E., et al.: CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 69 (2021)

    Google Scholar 

  14. Keaton, M.R., Zaveri, R.J., Doretto, G.: CellTranspose: few-shot domain adaptation for cellular instance segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 455–466 (2023)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Landman, B., Xu, Z., Iglesias, J., Styner, M., Langerak, T., Klein, A.: MICCAI multi-atlas labeling beyond the cranial vault–workshop and challenge. In: Proceedings of MICCAI Workshop Challenge. vol. 5, p. 12 (2015)

    Google Scholar 

  17. Lang, C., Cheng, G., Tu, B., Han, J.: Learning what not to segment: a new perspective on few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8057–8067 (2022)

    Google Scholar 

  18. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2021)

    Google Scholar 

  19. Nelder, J.A., Wedderburn, R.W.: Generalized linear models. J. R. Stat. Soc. Ser. A Stat. Soc. 135(3), 370–384 (1972)

    Article  MATH  Google Scholar 

  20. Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D.: Self-supervised learning for few-shot medical image segmentation. IEEE Trans. Med. Imaging 41(7), 1837–1848 (2022)

    Article  Google Scholar 

  21. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  22. Pelt, D.M., Sethian, J.A.: A mixed-scale dense convolutional neural network for image analysis. Proc. Natl. Acad. Sci. 115(2), 254–259 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rakelly, K., Shelhamer, E., Darrell, T., Efros, A.A., Levine, S.: Few-shot segmentation propagation with guided networks. arXiv preprint arXiv:1806.07373 (2018)

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  25. Roy, A.G., Siddiqui, S., Pölsterl, S., Navab, N., Wachinger, C.: ‘squeeze & excite’ guided few-shot segmentation of volumetric images. Med. Image Anal. 59, 101587 (2020)

    Article  Google Scholar 

  26. Sun, L., et al.: Few-shot medical image segmentation using a global correlation network with discriminative embedding. Comput. Biol. Med. 140, 105067 (2022)

    Article  MATH  Google Scholar 

  27. Tang, H., Liu, X., Sun, S., Yan, X., Xie, X.: Recurrent mask refinement for few-shot medical image segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3918–3928 (2021)

    Google Scholar 

  28. Vădineanu, S., Pelt, D.M., Dzyubachyk, O., Batenburg, K.J.: Reducing manual annotation costs for cell segmentation by upgrading low-quality annotations. J. Imaging 10(7), 172 (2024)

    Article  MATH  Google Scholar 

  29. Vădineanu, Ş., Pelt, D.M., Dzyubachyk, O., Batenburg, K.J.: An analysis of the impact of annotation errors on the accuracy of deep learning for cell segmentation. In: International Conference on Medical Imaging with Deep Learning, pp. 1251–1267. PMLR (2022)

    Google Scholar 

  30. Verma, R., et al.: MoNuSAC 2020: a multi-organ nuclei segmentation and classification challenge. IEEE Trans. Med. Imaging 40(12), 3413–3423 (2021)

    Article  MATH  Google Scholar 

  31. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment. In: proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9197–9206 (2019)

    Google Scholar 

  32. Wang, Y., Yao, Q., Kwok, J.T., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. (CSUR) 53(3), 1–34 (2020)

    Article  MATH  Google Scholar 

  33. Wu, H., Xiao, F., Liang, C.: Dual contrastive learning with anatomical auxiliary supervision for few-shot medical image segmentation. In: European Conference on Computer Vision, pp. 417–434. Springer (2022)

    Google Scholar 

  34. Xu, P., Roosta, F., Mahoney, M.W.: Second-order optimization for non-convex machine learning: an empirical study. In: Proceedings of the 2020 SIAM International Conference on Data Mining, pp. 199–207. SIAM (2020)

    Google Scholar 

  35. Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: CANet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5217–5226 (2019)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the SAILS program of Leiden University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Șerban Vădineanu .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vădineanu, Ș., Pelt, D.M., Dzyubachyk, O., Batenburg, K.J. (2025). From Feature Maps to Few-Shot Cell Segmentation. In: Huo, Y., Millis, B.A., Zhou, Y., Younis, K., Wang, X., Tang, Y. (eds) Medical Optical Imaging and Virtual Microscopy Image Analysis. MOVI 2024. Lecture Notes in Computer Science, vol 15371. Springer, Cham. https://doi.org/10.1007/978-3-031-77786-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77786-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77785-1

  • Online ISBN: 978-3-031-77786-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics