Abstract
In 2020, there were more than 1.4 million new cases of prostate cancer worldwide, and more than 375,000 deaths from the disease. The conventional diagnostic pathway hinges on the assessment of prostate-specific antigen (PSA) levels and the conduct of trans-rectal ultrasound (TRUS)-guided biopsies. However, the specificity of PSA as a biomarker is notably low, at approximately 36%, due to its elevation in benign prostatic conditions, underscoring the imperative for more precise diagnostic modalities. This research leverages a dataset comprising T2-weighted magnetic resonance (MR) images from 1,151 patients, totaling 61,119 images, to refine prostate cancer diagnostics. This paper introduces methodology that utilises knowledge-based artificial intelligence (AI) frameworks with image segmentation techniques to enhance the accuracy of prostate cancer detection. The approach in this paper focuses on the segmentation of MR images into distinct anatomical zones of the prostate - specifically, the transition zone (TZ) and peripheral zone (PZ). The variations of model produce a Dice Similarity Coefficient in the range of 0.373–0.544 in the 95th percentile. This segmentation is critical for the automation and augmentation of diagnostic precision in prostate cancer. This approach not only aims to improve the specificity and sensitivity of prostate cancer diagnostics but also to facilitate the exploitation of publicly accessible datasets for research advancements in this domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
WCRF International. Prostate cancer statistics: World Cancer Research Fund International (2022). https://www.wcrf.org/cancer-trends/prostate-cancer-statistics/
Schröder, F.H., et al.: Screening and prostate-cancer mortality in a randomized European study. New Engl. J. Med. 360(13), 1320–1328 (2009)
Barentsz, J.O., et al.: ESUR prostate MR guidelines 2012. Eur. Radiol. 22(4), 746–757 (2012)
Ahmed, H.U., et al.: Is it time to consider a role for MRI before prostate biopsy? Nat. Rev. Clin. Oncol. 6(4), 197–206 (2009)
Huang, S., Yang, J., Fong, S., Zhao, Q.: Artificial intelligence in cancer diagnosis and prognosis: opportunities and challenges. Cancer Lett. 471, 61–71 (2020)
Murphy, G., Haider, M., Ghai, S., Sreeharsha, B.: The expanding role of MRI in prostate cancer. AJR Am. J. Roentgenol. 201(6), 1229–38 (2013)
Luo, R., Zeng, Q., Chen, H.: Artificial intelligence algorithm-based MRI for differentiation diagnosis of prostate cancer. Comput. Math. Methods Med. (2022)
Lawrentschuk, N., et al.:‘Prostatic evasive anterior tumours’: the role of magnetic resonance imaging. BJU Int. 105(9), 1231–1236 (2010)
Ardila, D., et al.: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25(6), 954–961 (2019)
Jacobson, L.E., Hopgood, A.A., Bader-El-Den, M., Tamma, V., Prendergast, D., Osborn, P.: Hybrid system for prostate MR image segmentation using expert knowledge and machine learning. In: Bramer, M., Stahl, F. (eds.) SGAI 2023. LNCS, vol. 14381, pp. 493–498. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-47994-6_43
Anwar, S.M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., Khan, M.K.: Medical image analysis using convolutional neural networks: a review. J. Med. Syst. 42(11), 1–13 (2018)
Chahal, E.S., Patel, A., Gupta, A., Purwar, A.: Unet based Xception model for prostate cancer segmentation from MRI images. Multimed. Tools Appl. 81(26), 37333–37349 (2022)
Siddique, N., Paheding, S., Elkin, C.P., Devabhaktuni, V.: U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 9, 82031–82057 (2021)
Aldoj, N., Biavati, F., Michallek, F., Stober, S., Dewey, M.: Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net. Sci. Rep. 10(1), 1–17 (2020)
Ma, J.J.,et al.: Diagnostic image quality assessment and classification in medical imaging: opportunities and challenges. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 337–340. IEEE (2020)
Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman, H.: Computer-aided detection of prostate cancer in MRI. IEEE Trans. Med. Imaging 33(5), 1083–1092 (2014)
Masoudi, S., et al.: Quick guide on radiology image pre-processing for deep learning applications in prostate cancer research. J. Med. Imaging 8(1), 010901 (2021)
Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)
He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)
Yap, B.W., Rani, K.A., Rahman, H.A.A., Fong, S., Khairudin, Z., Abdullah, N.N.: An application of oversampling, undersampling, bagging and boosting in handling imbalanced datasets. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.) Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). LNEE, vol. 285, pp. 13–22. Springer, Singapore (2014). https://doi.org/10.1007/978-981-4585-18-7_2
Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)
Wang, K.J., Makond, B., Chen, K.H., Wang, K.M.: A hybrid classifier combining SMOTE with PSO to estimate 5-year survivability of breast cancer patients. Appl. Soft Comput. 20, 15–24 (2014)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
Bader-El-Den, M., Teitei, E., Perry, T.: Biased random forest for dealing with the class imbalance problem. IEEE Trans. Neural Netw. Learn. Syst. 30(7), 2163–2172 (2018)
Safdar, K., Akbar, S., Shoukat, A.: A majority voting based ensemble approach of deep learning classifiers for automated melanoma detection. In: 2021 International Conference on Innovative Computing (ICIC), pp. 1–6. IEEE (2021)
Ju, C., Bibaut, A., van der Laan, M.: The relative performance of ensemble methods with deep convolutional neural networks for image classification. J. Appl. Stat. 45(15), 2800–2818 (2018)
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
The Cancer Imaging Archive (TCIA). (2022). Prostate-MRI-US-Biopsy [Data file]. Retrieved from https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=68550661
Bardis, M., et al.: Segmentation of the prostate transition zone and peripheral zone on MR images with deep learning. Radiol. Imaging Cancer, 3(3) (2021)
Bonekamp, D., Jacobs, M.A., El-Khouli, R., Stoianovici, D., Macura, K.J.: Advancements in MR imaging of the prostate: from diagnosis to interventions. RadioGraphics 31, 677–703 (2011)
Wang, Z., Wu, R., Xu, Y., Liu, Y., Chai, R., Ma, H.: A two-stage CNN method for MRI image segmentation of prostate with lesion. Biomed. Signal Process. Control 82, 104610 (2023)
Hassanzadeh, T., Hamey, L.G., Ho-Shon, K.: Convolutional neural networks for prostate magnetic resonance image segmentation. IEEE Access 7, 36748–36760 (2019)
Negi, A., Raj, A.N.J., Nersisson, R., Zhuang, Z., Murugappan, M.: RDA-UNET-WGAN: an accurate breast ultrasound lesion segmentation using wasserstein generative adversarial networks. Arab. J. Sci. Eng. 45, 6399–6410 (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)
Tian, Z., Liu, L., Fei, B.: Deep convolutional neural network for prostate MR segmentation. Int. J. Comput. Assist. Radiol. Surg. 13(11), 1687 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jacobson, L.E.O. et al. (2025). Adaptive CNN Method for Prostate MR Image Segmentation Using Ensemble Learning. In: Bramer, M., Stahl, F. (eds) Artificial Intelligence XLI. SGAI 2024. Lecture Notes in Computer Science(), vol 15447. Springer, Cham. https://doi.org/10.1007/978-3-031-77918-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-77918-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77917-6
Online ISBN: 978-3-031-77918-3
eBook Packages: Computer ScienceComputer Science (R0)