Skip to main content

Utilizing Speaker Models and Topic Markers for Emotion Recognition in Dialogues

  • Conference paper
  • First Online:
Speech and Computer (SPECOM 2024)

Abstract

In modern speech emotion recognition (SER), improving upon state-of-the-art systems requires increasing sophistication of extracting discriminative information from training data. The key aspects of our research include utilizing automatic speaker verification (ASV) and topic detection models to enhance emotion recognition in multimodal (audio and text) dialogues. We conduct a comparative analysis of modern SER models and experiment with various models for text (RoBERTa, TodKat, COSMIC) and audio (WavLM, Wav2Vec2) modalities. We also employ attention-based fusion of the modalities and a BiGRU-based classification approach. The results show that our proposed model, which combines RoBERTa, TodKat, Wav2Vec2, WavLM, and attention-based fusion, achieves an F1-score of 0.657, outperforming the state-of-the-art systems using the same selection of modalities. This performance is only surpassed by models that utilize additional modalities beyond audio and text. We demonstrate the effectiveness of our approach in improving SER by leveraging advanced techniques for extracting discriminative information from multimodal training data. The incorporation of ASV and topic detection, along with the novel fusion and classification methods, contributes to the enhanced performance of our proposed model compared to the existing state-of-the-art SER systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mikolov, T., Yih, W.-T., Zweig, G.: Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 746–751. Association for Computational Linguistics (2013). https://aclanthology.org/N13-1090

  2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching Word Vectors with Subword Information (Version 2) (2016). arXiv. https://doi.org/10.48550/ARXIV.1607.04606

  3. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics (2014). https://doi.org/10.3115/v1/d14-1162

  4. Peters, M.E., et al.: Deep contextualized word representations (Version 2) (2018). arXiv. https://doi.org/10.48550/ARXIV.1802.05365

  5. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Version 2) (2018). arXiv. https://doi.org/10.48550/ARXIV.1810.04805

  6. Liu, Y., et al.: RoBERTa: A Robustly Optimized BERT Pretraining Approach (Version 1) (2019). arXiv. https://doi.org/10.48550/ARXIV.1907.11692

  7. Raffel, C., et al.: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer (Version 4) (2019). arXiv. https://doi.org/10.48550/ARXIV.1910.10683

  8. Lian, Z., Liu, B., Tao, J.: SMIN: semi-supervised multi-modal interaction network for conversational emotion recognition. In: IEEE Transactions on Affective Computing (Vol. 14, Issue 3, pp. 2415–2429). Institute of Electrical and Electronics Engineers (IEEE) (2023). https://doi.org/10.1109/taffc.2022.3141237

  9. Arumugam, B., Bhattacharjee, S. D., Yuan, J.: Multimodal attentive learning for real-time explainable emotion recognition in conversations. In 2022 IEEE International Symposium on Circuits and Systems (ISCAS) (Vol. 2, pp. 1210–1214). 2022 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE (2022). https://doi.org/10.1109/iscas48785.2022.9938005

  10. Ho, N.-H., Yang, H.-J., Kim, S.-H., Lee, G.: Multimodal approach of speech emotion recognition using multi-level multi-head fusion attention-based recurrent neural network. In: IEEE Access (Vol. 8, pp. 61672–61686). Institute of Electrical and Electronics Engineers (IEEE) (2020). https://doi.org/10.1109/access.2020.2984368

  11. Xu, Y., Xu, H., Zou, J.: HGFM: a hierarchical grained and feature model for acoustic emotion recognition. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Vol. 8, pp. 6499–6503). ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2020). https://doi.org/10.1109/icassp40776.2020.9053039

  12. Oliveira, J., Praca, I.: On the usage of pre-trained speech recognition deep layers to detect emotions. In: IEEE Access (Vol. 9, pp. 9699–9705). Institute of Electrical and Electronics Engineers (IEEE) (2021). https://doi.org/10.1109/access.2021.3051083

  13. Degottex, G., Kane, J., Drugman, T., Raitio, T., Scherer, S.: COVAREP; a collaborative voice analysis repository for speech technologies. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2014). https://doi.org/10.1109/icassp.2014.6853739

  14. Eyben, F., Wöllmer, M., Schuller, B.: OpenSMILE. In: Proceedings of the 18th ACM International Conference on Multimedia. MM ’10: ACM Multimedia Conference. ACM (2010). https://doi.org/10.1145/1873951.1874246

  15. Schneider, S., Baevski, A., Collobert, R., Auli, M.: wav2vec: Unsupervised Pre-training for Speech Recognition (Version 4) (2019). arXiv. https://doi.org/10.48550/ARXIV.1904.05862

  16. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition (Version 6) (2014). arXiv. https://doi.org/10.48550/ARXIV.1409.1556

  17. Matveev, A., Matveev, Y., Frolova, O., Nikolaev, A., Lyakso, E.: A neural network architecture for children’s audio-visual emotion recognition. In: Mathematics (Vol. 11, Issue 22, p. 4573). MDPI AG (2023). https://doi.org/10.3390/math11224573

  18. Meng, H., Yan, T., Yuan, F., Wei, H.: Speech emotion recognition from 3D Log-Mel spectrograms with deep learning network. In: IEEE Access (Vol. 7, pp. 125868-125881). Institute of Electrical and Electronics Engineers (IEEE) (2019). https://doi.org/10.1109/access.2019.2938007

  19. Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria, E., Mihalcea, R.: MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations (Version 6) (2018). arXiv. https://doi.org/10.48550/ARXIV.1810.02508

  20. Schneider, S., Baevski, A., Collobert, R., Auli, M.: wav2vec: Unsupervised Pre-training for Speech Recognition (Version 4) (2019). arXiv. https://doi.org/10.48550/ARXIV.1904.05862

  21. Ta, B.T., Nguyen, T.L., Dang, D.S., Le, N.M., Do, V.H.: Improving speech emotion recognition via fine-tuning ASR with speaker information. In: 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) (Vol. 38, pp. 1–6). 2022 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE (2022). https://doi.org/10.23919/apsipaasc55919.2022.9980214

  22. Ulgen, I.R., Du, Z., Busso, C., Sisman, B.: Revealing Emotional Clusters in Speaker Embeddings: A Contrastive Learning Strategy for Speech Emotion Recognition (2024). arXiv. https://doi.org/10.48550/ARXIV.2401.11017

  23. Chen, S., et al.: WavLM: large-scale self-supervised pre-training for full stack speech processing. In: IEEE Journal of Selected Topics in Signal Processing (Vol. 16, Issue 6, pp. 1505–1518). Institute of Electrical and Electronics Engineers (IEEE) (2022). https://doi.org/10.1109/jstsp.2022.3188113

  24. Ghosal, D., Majumder, N., Gelbukh, A., Mihalcea, R., Poria, S.: COSMIC: COmmonSense knowledge for eMotion Identification in Conversations (Version 1) (2020). arXiv. https://doi.org/10.48550/ARXIV.2010.02795

  25. Zhu, L., Pergola, G., Gui, L., Zhou, D., He, Y.: Topic-driven and knowledge-aware transformer for dialogue emotion detection. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.acl-long.125

  26. Sap, M., et al.: ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning (Version 3) (2018). arXiv. https://doi.org/10.48550/ARXIV.1811.00146

  27. Lian, Z., Liu, B., Tao, J.: CTNet: conversational transformer network for emotion recognition. In: IEEE/ACM Transactions on Audio, Speech, and Language Processing (Vol. 29, pp. 985–1000). Institute of Electrical and Electronics Engineers (IEEE) (2021). https://doi.org/10.1109/taslp.2021.3049898

  28. Huang, X., et al.: Emotion detection for conversations based on reinforcement learning framework. In: IEEE MultiMedia (Vol. 28, Issue 2, pp. 76–85). Institute of Electrical and Electronics Engineers (IEEE) (2021). https://doi.org/10.1109/mmul.2021.3065678

  29. Ma, H., Wang, J., Lin, H., Zhang, B., Zhang, Y., Xu, B.: A transformer-based model with self-distillation for multimodal emotion recognition in conversations. In: IEEE Transactions on Multimedia (Vol. 26, pp. 776–788). Institute of Electrical and Electronics Engineers (IEEE) (2024). https://doi.org/10.1109/tmm.2023.3271019

  30. Ren, M., Huang, X., Liu, J., Liu, M., Li, X., Liu, A.-A.: MALN: multimodal adversarial learning network for conversational emotion recognition. In: IEEE Transactions on Circuits and Systems for Video Technology (Vol. 33, Issue 11, pp. 6965–6980). Institute of Electrical and Electronics Engineers (IEEE) (2023). https://doi.org/10.1109/tcsvt.2023.3273577

  31. Guo, L., Wang, L., Dang, J., Fu, Y., Liu, J., Ding, S.: Emotion recognition with multimodal transformer fusion framework based on acoustic and lexical information. In: IEEE MultiMedia (Vol. 29, Issue 2, pp. 94–103). Institute of Electrical and Electronics Engineers (IEEE) (2022). https://doi.org/10.1109/mmul.2022.3161411

  32. Xu, C., Gao, Y.: Multi-modal transformer with multi-head attention for emotion recognition. In: 2023 IEEE International Conference on Sensors, Electronics and Computer Engineering (ICSECE) (pp. 826–831). IEEE (2023). https://doi.org/10.1109/icsece58870.2023.10263303

  33. Hou, M., Zhang, Z., Lu, G.: Multi-modal emotion recognition with self-guided modality calibration. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 4688–4692). ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2022). https://doi.org/10.1109/icassp43922.2022.9747859

  34. Zhong, P., Wang, D., Miao, C.: Knowledge-Enriched Transformer for Emotion Detection in Textual Conversations (Version 2) (2019). arXiv https://doi.org/10.48550/ARXIV.1909.10681

  35. Li, J., Zhang, M., Ji, D., Liu, Y.: Multi-Task Learning with Auxiliary Speaker Identification for Conversational Emotion Recognition (Version 2) (2020). arXiv https://doi.org/10.48550/ARXIV.2003.01478

  36. Kim, T., Vossen, P.: EmoBERTa: Speaker-Aware Emotion Recognition in Conversation with RoBERTa (Version 1) (2021). arXiv. https://doi.org/10.48550/ARXIV.2108.12009

  37. Son, J., Kim, J., Lim, J., Lim, H.: GRASP: Guiding model with RelAtional Semantics using Prompt for Dialogue Relation Extraction (Version 4) (2022). arXiv. https://doi.org/10.48550/ARXIV.2208.12494

  38. Hu, G., Lin, T.-E., Zhao, Y., Lu, G., Wu, Y., Li, Y.: UniMSE: Towards Unified Multimodal Sentiment Analysis and Emotion Recognition (Version 1) (2022). arXiv. https://doi.org/10.48550/ARXIV.2211.11256

  39. Ma, H., Wang, J., Lin, H., Zhang, B., Zhang, Y., Xu, B.: A transformer-based model with self-distillation for multimodal emotion recognition in conversations. In: IEEE Transactions on Multimedia (Vol. 26, pp. 776–788). Institute of Electrical and Electronics Engineers (IEEE) (2024). https://doi.org/10.1109/tmm.2023.3271019

Download references

Acknowledgments

The research was financially supported by the Russian Science Foundations (project 22-11-00128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olesia Makhnytkina .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Makhnytkina, O., Matveev, Y., Zubakov, A., Matveev, A. (2025). Utilizing Speaker Models and Topic Markers for Emotion Recognition in Dialogues. In: Karpov, A., Delić, V. (eds) Speech and Computer. SPECOM 2024. Lecture Notes in Computer Science(), vol 15300. Springer, Cham. https://doi.org/10.1007/978-3-031-78014-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78014-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78013-4

  • Online ISBN: 978-3-031-78014-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics