Skip to main content

Split-State Non-malleable Codes and Secret Sharing Schemes for Quantum Messages

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2024)

Abstract

Non-malleable codes are fundamental objects at the intersection of cryptography and coding theory. These codes provide security guarantees even in settings where error correction and detection are impossible, and have found applications to several other cryptographic tasks. One of the strongest and most well-studied adversarial tampering models is 2-split-state tampering. Here, a codeword is split into two parts which are stored in physically distant servers, and the adversary can then independently tamper with each part using arbitrary functions. This model can be naturally extended to the secret sharing setting with several parties by having the adversary independently tamper with each share. Previous works on non-malleable coding and secret sharing in the split-state tampering model only considered the encoding of classical messages. Furthermore, until recent work by Aggarwal, Boddu, and Jain (IEEE Trans. Inf. Theory 2024 & arXiv 2022), adversaries with quantum capabilities and shared entanglement had not been considered, and it is a priori not clear whether previous schemes remain secure in this model.

In this work, we introduce the notions of split-state non-malleable codes and secret sharing schemes for quantum messages secure against quantum adversaries with shared entanglement. Then, we present explicit constructions of such schemes that achieve low-error non-malleability. More precisely, for some constant \(c>0\), we construct efficiently encodable and decodable split-state non-malleable codes and secret sharing schemes for quantum messages preserving entanglement with external systems and achieving security against quantum adversaries having shared entanglement with codeword length n, any message length at most \(n^c\), and error \(\varepsilon =2^{-{n^{c}}}\). In the easier setting of average-case non-malleability, we achieve efficient non-malleable coding with rate close to 1/11.

J. Ribeiro—Work done while at NOVA LINCS and NOVA School of Science and Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A set \(\varGamma \subseteq 2^{[p]}\) is monotone if \(A\in \varGamma \) and \(A\subseteq B\) imply that \(B\in \varGamma \).

  2. 2.

    Meaning that the codeword is divided into three parts and the adversary tampers each part independently. We note that constructing NMCs in the 3-split-state model is considerably easier than in the 2-split-state model.

  3. 3.

    Tampering maps are assumed to be unitary without any loss of generality. This is because, in the presence of unbounded arbitrary shared entanglement, tampering with unitary maps is equivalent to tampering with CPTP maps. More precisely, consider a tampering adversary that uses two CPTP maps \(\varPhi _1\) and \(\varPhi _2\) acting on registers \(E_1 W_1\) and \(E_2 W_2\), respectively. Then, the action of this adversary is equivalent to another adversary who tampers using Stinespring isometry extensions U and V of \(\varPhi _1\) and \(\varPhi _2\), respectively, which act on \(E_1 W_1 A_1\) and \(E_2 W_2 A_2\), respectively, where \(A_1\) and \(A_2\) are unentangled ancilla registers set to \(|{0}\rangle \) without loss of generality and can be seen as part of the shared entanglement.

  4. 4.

    By this, we mean that \(p_{\mathcal {A}}\) can be computed and the state \(\gamma ^{\mathcal {A}}_{M}\) can be prepared without the knowledge of the input message \(\sigma _{M\hat{M}}\).

  5. 5.

    Clifford-based quantum authentication schemes apply a random (secret) Clifford operator to the message plus several additional “trap registers” initialized to \(|{0}\rangle \). Verifying whether tampering of the authenticated state occurred consists of checking whether the trap registers all return to the \(|{0}\rangle \) state after applying the inverse Clifford operator. If this does not hold, then the verification procedure outputs the special symbol \(\perp \), which we call the “trap flag”.

  6. 6.

    For the experienced reader, Batra, Boddu, and Jain [16] construct an explicit quantum-secure 2-source non-malleable extractor \(\textrm{nmExt}\) with a large output length. We can then sample classical bitstrings X and Y uniformly at random with appropriate lengths and set the classical key R to be \(R=\textrm{nmExt}(X,Y)\); this is the quantum-secure classical NMRE that we use in our optimized coding scheme.

  7. 7.

    “qpa-state” stands for quantum purified adversary state.

References

  1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin, T. (eds.) Theory of Cryptography, pp. 393–417. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  2. Aggarwal, D., Boddu, N.G., Jain, R.: Quantum secure non-malleable codes in the split-state model. IEEE Trans. Inf. Theory 70(1), 349–371 (2024). https://doi.org/10.1109/TIT.2023.3328839

    Article  MathSciNet  Google Scholar 

  3. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret sharing schemes for general access structures. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 510–539. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_18

  4. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. SIAM J. Comput. 47(2), 524–546 (2018). https://doi.org/10.1137/140985251. Preliminary version in STOC 2014

  5. Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) Theory of Cryptography, pp. 398–426. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  6. Aggarwal, D., Kanukurthi, B., Obbattu, S.L.B., Obremski, M., Sekar, S.: Rate one-third non-malleable codes. In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2022), pp. 1364–1377. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3519935.3519972

  7. Aggarwal, D., Obremski, M.: A constant rate non-malleable code in the split-state model. In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pp. 1285–1294. IEEE Computer Society, Los Alamitos (2020). https://doi.org/10.1109/FOCS46700.2020.00122

  8. Alagic, G., Majenz, C.: Quantum non-malleability and authentication. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 310–341. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_11

    Chapter  Google Scholar 

  9. Ambainis, A., Bouda, J., Winter, A.: Nonmalleable encryption of quantum information. J. Math. Phys. 50(4), 042106 (2009). https://doi.org/10.1063/1.3094756

    Article  MathSciNet  Google Scholar 

  10. Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 593–622. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_20

    Chapter  Google Scholar 

  11. Ball, M., Chattopadhyay, E., Liao, J., Malkin, T., Tan, L.: Non-malleability against polynomial tampering. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology - CRYPTO 2020, pp. 97–126. Springer (2020).https://doi.org/10.1007/978-3-030-56877-1_4

  12. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_31

    Chapter  Google Scholar 

  13. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from average-case hardness: \(\sf AC^0\), decision trees, and streaming space-bounded tampering. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018, pp. 618–650. Springer (2018).https://doi.org/10.1007/978-3-319-78372-7_20

  14. Ball, M., Guo, S., Wichs, D.: Non-malleable codes for decision trees. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 413–434. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_15

    Chapter  Google Scholar 

  15. Barnum, H., Crepeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2002, pp. 449–458 (2002). https://doi.org/10.1109/SFCS.2002.1181969

  16. Batra, R., Boddu, N.G., Jain, R.: Quantum secure non-malleable randomness encoder and its applications. arXiv preprint arXiv:2308.07340 (2023). Contributed talk at QCRYPT 2023

  17. Bergamaschi, T.: Pauli manipulation detection codes and applications to quantum communication over adversarial channels. In: Joye, M., Leander, G. (eds.) Advances in Cryptology – EUROCRYPT 2024, pp. 404–433. Springer, Cham (2024). https://arxiv.org/abs/2304.06269

  18. Blakley, G.R.: Safeguarding cryptographic keys. In: 1979 International Workshop on Managing Requirements Knowledge (MARK), pp. 313–318 (1979). https://doi.org/10.1109/MARK.1979.8817296

  19. Boddu, N.G., Goyal, V., Jain, R., Ribeiro, J.: Split-state non-malleable codes and secret sharing schemes for quantum messages. arXiv preprint arXiv:2308.06466

  20. Boddu, N.G., Jain, R., Kapshikar, U.: Quantum secure non-malleable-extractors. arXiv preprint arXiv:2109.03097 (2021). Contributed talk at TQC 2022

  21. Brian, G., Faonio, A., Obremski, M., Simkin, M., Venturi, D.: Non-malleable secret sharing against bounded joint-tampering attacks in the plain model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 127–155. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_5

    Chapter  Google Scholar 

  22. Brian, G., Faonio, A., Ribeiro, J., Venturi, D.: Short non-malleable codes from related-key secure block ciphers, revisited. IACR Trans. Symmet. Cryptol. 2022(3), 1–19 (2022). https://doi.org/10.46586/tosc.v2022.i3.1-19

  23. Brian, G., Faonio, A., Venturi, D.: Continuously non-malleable secret sharing: joint tampering, plain model and capacity. In: Nissim, K., Waters, B. (eds.) Theory of Cryptography, pp. 333–364. Springer, Cham (2021)

    Chapter  Google Scholar 

  24. Brian, G., Faust, S., Micheli, E., Venturi, D.: Continuously non-malleable codes against bounded-depth tampering. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology - ASIACRYPT 2022, pp. 384–413. Springer (2022). https://doi.org/10.1007/978-3-031-22972-5_14

  25. Broadbent, A., Wainewright, E.: Efficient simulation for quantum message authentication. In: Nascimento, A.C., Barreto, P. (eds.) Information Theoretic Security, pp. 72–91. Springer, Cham (2016)

    Chapter  Google Scholar 

  26. Çakan, A., Goyal, V., Liu-Zhang, C.D., Ribeiro, J.: Unbounded leakage-resilience and intrusion-detection in a quantum world (2024). https://eprint.iacr.org/2023/410, to appear at TCC 2024. Contributed talk at TQC 2024. https://eprint.iacr.org/2023/410

  27. Chandran, N., Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Short leakage resilient and non-malleable secret sharing schemes. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology - CRYPTO 2022, pp. 178–207. Springer (2022). https://doi.org/10.1007/978-3-031-15802-5_7

  28. Chattopadhyay, E., Goyal, V., Li, X.: Nonmalleable extractors and codes, with their many tampered extensions. SIAM J. Comput. 49(5), 999–1040 (2020). https://doi.org/10.1137/18M1176622. Preliminary version in STOC 2016

  29. Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In: Proceedings of Theory of Cryptography Conference (TCC), pp. 440–464 (2014). https://doi.org/10.1007/978-3-642-54242-8_19. Extended Version in Journal of Cryptology

  30. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. IEEE Trans. Inf. Theory 62(3), 1097–1118 (2016). https://doi.org/10.1109/TIT.2015.2511784

    Article  MathSciNet  Google Scholar 

  31. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969). https://doi.org/10.1103/PhysRevLett.23.880

  32. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999). https://doi.org/10.1103/PhysRevLett.83.648

  33. Cleve, R., Leung, D., Liu, L., Wang, C.: Near-linear constructions of exact unitary 2-designs. Quantum Info. Comput. 16(9–10), 721–756 (2016)

    Google Scholar 

  34. Dankert, C., Cleve, R., Emerson, J., Livine, E.: Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 80, 012304 (2009). https://doi.org/10.1103/PhysRevA.80.012304

  35. Datta, N.: Min- and max- relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55, 2816–2826 (2009)

    Article  MathSciNet  Google Scholar 

  36. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_14

    Chapter  Google Scholar 

  37. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4), 1–32 (2018). https://doi.org/10.1145/3178432. Preliminary version in ICS 2010

  38. Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting: adaptive tampering, noisy-leakage resilience, and improved rate. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 448–479. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_16

    Chapter  Google Scholar 

  39. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for space-bounded tampering. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology - CRYPTO 2017, pp. 95–126. Springer (2017). https://doi.org/10.1007/978-3-319-63715-0_4

  40. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes. In: Lindell, Y. (ed.) Theory of Cryptography - 11th Theory of Cryptography Conference, TCC 2014, pp. 465–488. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_20

  41. Fehr, S., Karpman, P., Mennink, B.: Short non-malleable codes from related-key secure block ciphers. IACR Trans. Symmet. Cryptol. 2018(1), 336–352 (2018). https://doi.org/10.13154/tosc.v2018.i1.336-352

  42. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018), pp. 685–698. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3188745.3188872

  43. Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 501–530. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_17

    Chapter  Google Scholar 

  44. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing (STOC 2016), pp. 1128–1141. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2897518.2897657

  45. Goyal, V., Srinivasan, A., Zhu, C.: Multi-source non-malleable extractors and applications. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 468–497. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_16

    Chapter  Google Scholar 

  46. Jain, R., Radhakrishnan, J., Sen, P.: Privacy and interaction in quantum communication complexity and a theorem about the relative entropy of quantum states. In: The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp. 429–438 (2002). https://doi.org/10.1109/SFCS.2002.1181967

  47. Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Non-malleable randomness encoders and their applications. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018, pp. 589–617. Springer, Cham (2018)

    Chapter  Google Scholar 

  48. Kiayias, A., Liu, F.H., Tselekounis, Y.: Practical non-malleable codes from \(\ell \)-more extractable hash functions. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS 2016), pp. 1317–1328. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2976749.2978352

  49. Li, X.: Three-source extractors for polylogarithmic min-entropy. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 863–882 (2015). https://doi.org/10.1109/FOCS.2015.58

  50. Li, X.: Improved non-malleable extractors, non-malleable codes and independent source extractors. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), pp. 1144–1156. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3055399.3055486

  51. Li, X.: Non-malleable extractors and non-malleable codes: partially optimal constructions. In: Proceedings of the 34th Computational Complexity Conference (CCC 2019). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, DEU (2019). https://doi.org/10.4230/LIPIcs.CCC.2019.28

  52. Li, X.: Two source extractors for asymptotically optimal entropy, and (many) more. In: 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1271–1281 (2023). https://doi.org/10.1109/FOCS57990.2023.00075

  53. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_30

    Chapter  Google Scholar 

  54. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  55. Ozols, M.: Lecture 5: quantum information processing protocols, quantum computing: exercise sheet 2 (2016). https://www.cl.cam.ac.uk/teaching/1617/QuantComp/exercise2.pdf

  56. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://doi.org/10.1145/359168.359176

  57. Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 480–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_17

    Chapter  Google Scholar 

  58. Watrous, J.: The Theory of Quantum Information. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

Download references

Acknowledgements

We thank Thiago Bergamaschi for insightful discussions about notions of non-malleability in the quantum setting. We also thank Dakshita Khurana for useful discussions in the initial stage of this project.

JR was supported in part by NOVA LINCS (ref. UIDB/04516/2020) with the financial support of FCT - Fundação para a Ciência e a Tecnologia. RJ was supported by the NRF grant NRF2021-QEP2-02-P05 and the Ministry of Education, Singapore, under the Research Centres of Excellence program. This work was done in part while RJ was visiting the Technion-Israel Institute of Technology, Haifa, Israel and the Simons Institute for the Theory of Computing, Berkeley, CA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boddu, N.G., Goyal, V., Jain, R., Ribeiro, J. (2025). Split-State Non-malleable Codes and Secret Sharing Schemes for Quantum Messages. In: Boyle, E., Mahmoody, M. (eds) Theory of Cryptography. TCC 2024. Lecture Notes in Computer Science, vol 15365. Springer, Cham. https://doi.org/10.1007/978-3-031-78017-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78017-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78016-5

  • Online ISBN: 978-3-031-78017-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics