Skip to main content

Adaptive Security, Erasures, and Network Assumptions in Communication-Local MPC

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2024)

Abstract

The problem of reliable/secure all-to-all communication over low-degree networks has been essential for communication-local (CL) n-party MPC (i.e., MPC protocols where every party directly communicates only with a few, typically polylogarithmic in n, parties) and more recently for communication over ad hoc networks, which are used in blockchain protocols. However, a limited number of adaptively secure solutions exist, and they all make relatively strong assumptions on the ability of parties to act in some specific manner before the adversary can corrupt them. Two such assumptions were made in the work of Chandran et al. [ITCS ’15]—parties can (a) multisend messages to several receivers simultaneously; and (b) securely erase the message and the identities of the receivers, before the adversary gets a chance to corrupt the sender (even if a receiver is corrupted).

A natural question to ask is: Are these assumptions necessary for adaptively secure CL MPC? In this paper, we characterize the feasibility landscape for all-to-all reliable message transmission (RMT) under these two assumptions, and use this characterization to obtain (asymptotically) tight feasibility results for CL MPC.

  • First, we prove a strong impossibility result for a broad class of RMT protocols, termed here store-and-forward protocols, which includes all known communication protocols for CL MPC from standard cryptographic assumptions. Concretely, we show that no such protocol with a certain expansion rate can tolerate a constant fraction of parties being corrupted.

  • Next, under the assumption of only a PKI, we show that assuming secure erasures, we can obtain an RMT protocol between all pairs of parties with polylogarithmic locality (even without assuming multisend) for the honest majority setting. We complement this result by showing a negative result for the setting of dishonest majority.

  • Finally, and somewhat surprisingly, under stronger assumptions (i.e., trapdoor permutations with a reverse domain sampler, and compact and malicious circuit-private FHE), we construct a polylogarithmic-locality all-to-one RMT protocol, which is adaptively secure and tolerates any constant fraction of corruptions, without assuming either secure erasures or multisend. This last result uses a novel combination of adaptively secure (e.g., non-committing) encryption and (static) FHE to bypass the impossibility of compact adaptively secure FHE by Katz et al. [PKC’13], which we believe may be of independent interest. Intriguingly, even such assumptions do not allow reducing all-to-all RMT to all-to-one RMT (a reduction which is trivial in the non-CL setting). Still, we can implement what we call sublinear output-set RMT (SOS-RMT for short). We show how SOS-RMT can be used for SOS-MPC under the known bounds for feasibility of MPC in the standard (i.e., non-CL) setting assuming, in addition to SOS-RMT, an anonymous PKI.

R. Ostrovsky—This research was supported in part by NSF grants CNS-2246355, CCF-2220450, US-Israel BSF grant 2022370, and by Sunday Group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As a side note, an interesting side effect of the recent popularity of blockchain protocols is that, as they also rely on gossiping for communication, results on the feasibility of sublinear-communication protocols provide insights on basic feasibility questions in the blockchain context as well (see related work for further details).

  2. 2.

    As shown in  [33, 36], this property is impossible to obtain from simple point-to-point communication in the standard adaptive and rushing adversary setting [10].

  3. 3.

    Here “low” specifically means asymptotically smaller than the adversary’s corruption budget.

  4. 4.

    Here, we use “full” MPC to refer to the standard MPC formulation where no party is left out; this is in contrast to “almost-everywhere” MPC [27], where some of the parties are not given any correctness and privacy guarantees.

  5. 5.

    Since we will be running at most polylogarithmic-round protocols, we can assume wlog that the hidden graph is a multi-graph consisting of polylogarithmic, independent copies of polylogarithmic-degree hidden graph setup.

  6. 6.

    Recall that the hidden graph is directed.

  7. 7.

    WLOG, we assume that valid RMT messages are from a fixed-size domain.

  8. 8.

    Recall that this can be replaced by an SKI or a NIKE scheme assuming the PKI supports it.

  9. 9.

    Note that Theorem 3 implies that if we assume erasures as an atomic operation and no atomic multisend, then no MPC as in the above theorem exists if \(t>(\frac{1}{2}+\epsilon '') n\) for some constant \(\epsilon ''\). However, this is anyway implied by the tightness of the condition \(t<n/2\) for adaptive security even in the complete (i.e., non-CL) point-to-point channels setting, and is therefore omitted.

References

  1. Abraham, I., et al.: Communication complexity of byzantine agreement, revisited. In: Robinson, P., Ellen, F. (eds.) Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, 29 July–2 August 2019, pp. 317–326. ACM (2019). https://doi.org/10.1145/3293611.3331629

  2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract), pp. 503–513 (1990). https://doi.org/10.1145/100216.100287

  3. Beck, M., et al.: Logistical computing and internetworking: middleware for the use of storage in communication. In: 3rd Annual International Workshop on Active Middleware Services (AMS 2001), 6 August 2001, San Francisco, CA, USA, pp. 12–21. IEEE Computer Society (2001). https://doi.org/10.1109/AMS.2001.993716

  4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing, 2–4 May, 1988, Chicago, Illinois, USA, pp. 1–10. ACM (1988). https://doi.org/10.1145/62212.62213

  5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract), pp. 1–10 (1988). https://doi.org/10.1145/62212.62213

  6. Boyle, E., Chung, K.-M., Pass, R.: Large-scale secure computation: multi-party computation for (parallel) RAM programs. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 742–762. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_36

    Chapter  Google Scholar 

  7. Boyle, E., Cohen, R., Data, D., Hubáček, P.: Must the communication graph of MPC protocols be an expander? In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 243–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_9

  8. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_21

  9. Boyle, E., Goldwasser, S., Tessaro, S.: Communication locality in secure multi-party computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 356–376. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_21

  10. Canetti, R.: Security and composition of multiparty cryptographic protocols 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

  11. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols, pp. 136–145 (2001). https://doi.org/10.1109/SFCS.2001.959888

  12. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May, 1996, pp. 639–648. ACM (1996). https://doi.org/10.1145/237814.238015

  13. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation, pp. 639–648 (1996). https://doi.org/10.1145/237814.238015

  14. Chandran, N., Chongchitmate, W., Garay, J.A., Goldwasser, S., Ostrovsky, R., Zikas, V.: Optimally resilient and adaptively secure multi-party computation with low communication locality. IACR Cryptol. ePrint Arch, vol. 2014, p. 615 (2014). http://eprint.iacr.org/2014/615

  15. Chandran, N., Chongchitmate, W., Garay, J.A., Goldwasser, S., Ostrovsky, R., Zikas, V.: The hidden graph model: communication locality and optimal resiliency with adaptive faults, pp. 153–162 (2015).https://doi.org/10.1145/2688073.2688102

  16. Chandran, N., Forghani, P., Garay, J.A., Ostrovsky, R., Patel, R., Zikas, V.: Universally composable almost-everywhere secure computation. In: Dachman-Soled, D. (eds.) 3rd Conference on Information-Theoretic Cryptography, ITC 2022. LIPIcs, 5–7 July, 2022, Cambridge, MA, USA, vol. 230, pp. 14:1–14:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ITC.2022.14

  17. Chandran, N., Garay, J., Ostrovsky, R.: Improved fault tolerance and secure computation on sparse networks. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 249–260. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1_21

  18. Chandran, N., Garay, J., Ostrovsky, R.: Edge fault tolerance on sparse networks. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 452–463. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31585-5_41

    Chapter  Google Scholar 

  19. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Simon, J. (eds.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing, 2–4 May, 1988, Chicago, Illinois, USA, pp. 11–19. ACM (1988). https://doi.org/10.1145/62212.62214

  20. Damgård, I., Ishai, Y.: Scalable secure multiparty computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 501–520. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_30

  21. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_23

  22. Dani, V., King, V., Movahedi, M., Saia, J.: Brief announcement: breaking the \(O(nm)\) bit barrier, secure multiparty computation with a static adversary. In: ACM Symposium on Principles of Distributed Computing, PODC 2012, Funchal, Madeira, Portugal, 16–18 July 2012, pp. 227–228 (2012)

    Google Scholar 

  23. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of bounded degree (preliminary version), pp. 370–379 (1986). https://doi.org/10.1145/12130.12169

  24. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_17

    Chapter  Google Scholar 

  25. Garay, J., Ishai, Y., Ostrovsky, R., Zikas, V.: The price of low communication in secure multi-party computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 420–446. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_14

    Chapter  Google Scholar 

  26. Garay, J.A., Katz, J., Kumaresan, R., Zhou, H.: Adaptively secure broadcast, revisited. In: Gavoille, C., Fraigniaud, P. (eds.) Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, PODC 2011, San Jose, CA, USA, 6–8 June, 2011, pp. 179–186. ACM (2011). https://doi.org/10.1145/1993806.1993832

  27. Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 307–323. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_18

  28. Garg, S., Sahai, A.: Adaptively secure multi-party computation with dishonest majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 105–123. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_8

    Chapter  Google Scholar 

  29. Gentry, C.: Fully homomorphic encryption using ideal lattices, pp. 169–178 (2009). https://doi.org/10.1145/1536414.1536440

  30. Gentry, C., et al.: YOSO: you only speak once. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 64–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_3

  31. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A.V. (eds.) Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, pp. 218–229. ACM (1987). https://doi.org/10.1145/28395.28420

  32. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority, pp. 218–229 (1987). https://doi.org/10.1145/28395.28420

  33. Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_24

    Chapter  Google Scholar 

  34. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

  35. Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agreement. In: Dwork, C. (eds.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_27

  36. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_27

    Chapter  Google Scholar 

  37. Katz, J., Thiruvengadam, A., Zhou, H.-S.: Feasibility and infeasibility of adaptively secure fully homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 14–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_2

    Chapter  Google Scholar 

  38. King, V., Saia, J.: Breaking the o(n\(^{\text{2}}\)) bit barrier: scalable byzantine agreement with an adaptive adversary. In: Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing, PODC 2010, Zurich, Switzerland, 25–28 July 2010, pp. 420–429 (2010)

    Google Scholar 

  39. King, V., Saia, J., Sanwalani, V., Vee, E.: Scalable leader election. In: SODA, pp. 990–999 (2006)

    Google Scholar 

  40. King, V., Saia, J., Sanwalani, V., Vee, E.: Towards secure and scalable computation in peer-to-peer networks. In: FOCS, pp. 87–98 (2006)

    Google Scholar 

  41. Matt, C., Nielsen, J.B., Thomsen, S.E.: Formalizing delayed adaptive corruptions and the security of flooding networks. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology, CRYPTO 2022. LNCS, vol. 13508, pp. 400–430. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_14

  42. Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_30

    Chapter  Google Scholar 

  43. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_25

  44. Upfal, E.: Tolerating linear number of faults in networks of bounded degree. In: PODC, pp. 83–89 (1992)

    Google Scholar 

  45. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (eds.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2

  46. Wan, J., Xiao, H., Devadas, S., Shi, E.: Round-efficient byzantine broadcast under strongly adaptive and majority corruptions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 412–456. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_15

  47. Yao, A.C.C.: Protocols for secure computations (extended abstract), pp. 160–164 (1982). https://doi.org/10.1109/SFCS.1982.38

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankit Kumar Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chandran, N., Garay, J., Misra, A.K., Ostrovsky, R., Zikas, V. (2025). Adaptive Security, Erasures, and Network Assumptions in Communication-Local MPC. In: Boyle, E., Mahmoody, M. (eds) Theory of Cryptography. TCC 2024. Lecture Notes in Computer Science, vol 15367. Springer, Cham. https://doi.org/10.1007/978-3-031-78023-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78023-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78022-6

  • Online ISBN: 978-3-031-78023-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics