Skip to main content

Deep Prompt Multi-task Network for Abuse Language Detection

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15301))

Included in the following conference series:

  • 141 Accesses

Abstract

The detection of abuse language remains a long-standing challenge with the extensive use of social networks. The detection task of abuse language suffers from limited accuracy. We argue that the existing detection methods utilize the fine-tuning technique of the pre-trained language models (PLMs) to handle downstream tasks. Hence, these methods fail to stimulate the general knowledge of the PLMs. To address the problem, we propose a novel Deep Prompt Multi-task Network (DPMN) for abuse language detection. Specifically, DPMN first attempts to design two forms of deep prompt tuning and light prompt tuning for the PLMs. The effects of different prompt lengths, tuning strategies, and prompt initialization methods on detecting abuse language are studied. In addition, we propose a Task Head based on Bi-LSTM and FFN, which can be used as a short text classifier. Eventually, DPMN utilizes multi-task learning to improve detection metrics further. The multi-task network has the function of transferring effective knowledge. The proposed DPMN is evaluated against eight typical methods on three public datasets: OLID, SOLID, and AbuseAnalyzer. The experimental results show that our DPMN outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541ā€“551 (1989)

    Article  Google Scholar 

  2. Mikolov, T., KarafiĆ”t, M., Burget, L., Cernockį»³, J., Khudanpur, S.: Recurrent neural network based language model. In: Interspeech, vol. 2, pp. 1045ā€“1048. Makuhari (2010)

    Google Scholar 

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  4. Radford, A., Narasimhan, K., Sutskever, I., Salimans, T., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  5. Liu, P., Li, W., Zou, L.: Nuli at semeval-2019 task 6: transfer learning for offensive language detection using bidirectional transformers. In: SemEval@ NAACL-HLT, pp. 87ā€“91 (2019)

    Google Scholar 

  6. Chandra, M., et al.: AbuseAnalyzer: abuse detection, severity and target prediction for gab posts. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 6277ā€“6283. International Committee on Computational Linguistics (2020)

    Google Scholar 

  7. Dai, W., Yu, T., Liu, Z., Fung, P.: Kungfupanda at semeval-2020 task 12: bert-based multi-task learning for offensive language detection. arXiv preprint arXiv:2004.13432 (2020)

  8. Wiedemann, G., Yimam, S.M., Biemann, C.: Uhh-lt at semeval-2020 task 12: fine-tuning of pre-trained transformer networks for offensive language detection. arXiv preprint arXiv:2004.11493 (2020)

  9. Hakimov, S., Ewerth, R.: Combining textual features for the detection of hateful and offensive language. arXiv preprint arXiv:2112.04803 (2021)

  10. Zhang, S., Zheng, D., Hu, X., Yang, M.: Bidirectional long short-term memory networks for relation classification. In: Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation, pp. 73ā€“78 (2015)

    Google Scholar 

  11. Bebis, G., Georgiopoulos, M.: Feed-forward neural networks. IEEE Pot. 13(4), 27ā€“31 (1994)

    Google Scholar 

  12. Kumar, R., Ojha, A.K., Malmasi, S., Zampieri, M.: Benchmarking aggression identification in social media. In: Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018), pp. 1ā€“11 (2018)

    Google Scholar 

  13. Huang, Q., Singh, V.K., Atrey, P.K.: Cyber bullying detection using social and textual analysis. In: Proceedings of the 3rd International Workshop on Socially-aware Multimedia, pp. 3ā€“6 (2014)

    Google Scholar 

  14. Park, J.H., Fung, P.: One-step and two-step classification for abusive language detection on twitter. arXiv preprint arXiv:1706.01206 (2017)

  15. Xu, J.M., Jun, K.S., Zhu, X., Bellmore, A.: Learning from bullying traces in social media. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 656ā€“666 (2012)

    Google Scholar 

  16. Kwok, I., Wang, Y.: Locate the hate: detecting tweets against blacks. In: Twenty-Seventh AAAI Conference on Artificial Intelligence (2013)

    Google Scholar 

  17. Burnap, P., Williams, M.L.: Cyber hate speech on twitter: an application of machine classification and statistical modeling for policy and decision making. Policy Internet 7(2), 223ā€“242 (2015)

    Article  Google Scholar 

  18. Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., Bhamidipati, N.: Hate speech detection with comment embeddings. In: Proceedings of the 24th International Conference on World Wide Web, pp. 29ā€“30 (2015)

    Google Scholar 

  19. Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection and the problem of offensive language. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 11, pp. 512ā€“515 (2017)

    Google Scholar 

  20. Chen, Y., Zhou, Y., Zhu, S., Xu, H.: Detecting offensive language in social media to protect adolescent online safety. In: 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing, pp. 71ā€“80. IEEE (2012)

    Google Scholar 

  21. Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., Kumar, R.: Predicting the type and target of offensive posts in social media. arXiv preprint arXiv:1902.09666 (2019)

  22. Rosenthal, S., Atanasova, P., Karadzhov, G., Zampieri, M., Nakov, P.: A large-scale semi-supervised dataset for offensive language identification. arXiv preprint arXiv:2004.14454 (2020)

  23. Wang, Y.S., Chang, Y.: Toxicity detection with generative prompt-based inference. arXiv preprint arXiv:2205.12390 (2022)

  24. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877ā€“1901 (2020)

    Google Scholar 

  25. Ben-David, E., Oved, N., Reichart, R.: Pada: a prompt-based autoregressive approach for adaptation to unseen domains. arXiv preprint arXiv:2102.12206 (2021)

  26. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021)

  27. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. arXiv preprint arXiv:2107.13586 (2021)

  28. Lu, Y., Bartolo, M., Moore, A., Riedel, S., Stenetorp, P.: Fantastically ordered prompts and where to find them: overcoming few-shot prompt order sensitivity. arXiv preprint arXiv:2104.08786 (2021)

  29. Reynolds, L., McDonell, K.: Prompt programming for large language models: beyond the few-shot paradigm. In: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1ā€“7 (2021)

    Google Scholar 

  30. Le Scao, T., Rush, A.M.: How many data points is a prompt worth? arXiv preprint arXiv:2103.08493 (2021)

  31. Hu, S., Ding, N., Wang, H., Liu, Z., Li, J., Sun, M.: Knowledgeable prompt-tuning: Incorporating knowledge into prompt verbalizer for text classification. arXiv preprint arXiv:2108.02035 (2021)

  32. Gao, T., Fisch, A., Chen, D.: Making pre-trained language models better few-shot learners. arXiv preprint arXiv:2012.15723 (2020)

  33. Shin, T., Razeghi, Y., Logan IV, R.L., Wallace, E., Singh, S.: Autoprompt: eliciting knowledge from language models with automatically generated prompts. arXiv preprint arXiv:2010.15980 (2020)

  34. Hambardzumyan, K., Khachatrian, H., May, J.: Warp: word-level adversarial reprogramming. arXiv preprint arXiv:2101.00121 (2021)

  35. He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., Neubig, G.: Towards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366 (2021)

  36. Li, X.L., Liang, P.: Prefix-tuning: optimizing continuous prompts for generation. arXiv preprint arXiv:2101.00190 (2021)

  37. Liu, X., et al.: Gpt understands, too. arXiv preprint arXiv:2103.10385 (2021)

  38. Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N., Kumar, R.: Semeval-2019 task 6: identifying and categorizing offensive language in social media (offenseval). arXiv preprint arXiv:1903.08983 (2019)

  39. Chandra, M., et al. Abuseanalyzer: abuse detection, severity and target prediction for gab posts. arXiv preprint arXiv:2010.00038 (2020)

  40. Kleinbaum, D.G., Dietz, K., Gail, M., Klein, M., Klein, M.: Logistic Regression. Springer, Heidelberg (2002)

    Google Scholar 

  41. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785ā€“794 (2016)

    Google Scholar 

  42. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123ā€“140 (1996)

    Article  Google Scholar 

  43. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18ā€“28 (1998)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key Research and Development Program of China (Grant No. 2021ZD0201501), the Youth Foundation Project of Zhejiang Province (Grant No. LQ22F020035), the National Natural Science Foundation of China (No. 32200860), and the Youth Foundation Project of Zhejiang Province (Grant No. LQ22F020035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, J. et al. (2025). Deep Prompt Multi-task Network for Abuse Language Detection. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15301. Springer, Cham. https://doi.org/10.1007/978-3-031-78107-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78107-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78106-3

  • Online ISBN: 978-3-031-78107-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics