Skip to main content

Content-Aware Feature Upsampling for Voxel-Based 3D Semantic Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15330))

Included in the following conference series:

  • 274 Accesses

Abstract

Voxel-based sparse convolutional networks(sparse CNNs) are widely used in 3D point cloud semantic segmentation. In particular, feature upsampling, as one of the fundamental operations in the sparse CNNs, has been under-explored compared with other basic operations such as sparse convolution and pooling. Therefore, we dive deep into this area and focus on the upsampling design in sparse CNNs. 3D sparse deconvolution is the most representative feature unsampling in sparse CNNs. However, it applies the same kernel across the point cloud, regardless of the content of each point. To this end, we propose 3D Content-Aware Feature Upsampling(3DCAFU), a universal and effective module beyond sparse deconvolution in sparse CNNs. 3DCAFU has three appealing properties: (1) Content-aware processing. Instead of a fixed kernel for the point cloud feature, 3DCAFU generates point-wise kernels specific to each point for adaptive upsampling. (2) Context aggregation. Since the generation of the point-wise kernels aggregates the context of local neighborhoods, it makes the upsampled feature of 3DCAFU contain richer semantic information compared with sparse deconvolution. (3) Lightweight and efficient. 3DCAFU introduces little extra parameters and accelerates the computation on GPUs by gather-scatter paradigm. Extensive experiments on the SemanticKITTI, SemanticPOSS, nuScenes, and Waymo benchmarks validate the effectiveness of our approach. For instance, it outperforms the baseline by 1.7\(\%\) mIoU in the SemanticKITTI dataset. SphereFormer with 3DCAFU has achieved state-of-the-art performance among voxel-based methods for 3D semantic segmentation. The code will be made publicly available soon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J.: Semantickitti: A dataset for semantic scene understanding of lidar sequences. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 9297–9307 (2019)

    Google Scholar 

  2. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11621–11631 (2020)

    Google Scholar 

  3. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: Attention over convolution kernels. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11030–11039 (2020)

    Google Scholar 

  4. Chen, Y., Li, Y., Zhang, X., Sun, J., Jia, J.: Focal sparse convolutional networks for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5428–5437 (2022)

    Google Scholar 

  5. Cheng, R., Razani, R., Taghavi, E., Li, E., Liu, B.: 2-s3net: Attentive feature fusion with adaptive feature selection for sparse semantic segmentation network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 12547–12556 (2021)

    Google Scholar 

  6. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 3075–3084 (2019)

    Google Scholar 

  7. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proceedings of the IEEE international conference on computer vision. pp. 764–773 (2017)

    Google Scholar 

  8. Graham, B., Engelcke, M., Van Der Maaten, L.: 3d semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 9224–9232 (2018)

    Google Scholar 

  9. Graham, B., Van der Maaten, L.: Submanifold sparse convolutional networks. arXiv preprint arXiv:1706.01307 (2017)

  10. Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A.: Randla-net: Efficient semantic segmentation of large-scale point clouds. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11108–11117 (2020)

    Google Scholar 

  11. Kong, L., Liu, Y., Chen, R., Ma, Y., Zhu, X., Li, Y., Hou, Y., Qiao, Y., Liu, Z.: Rethinking range view representation for lidar segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 228–240 (2023)

    Google Scholar 

  12. Lai, X., Chen, Y., Lu, F., Liu, J., Jia, J.: Spherical transformer for lidar-based 3d recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 17545–17555 (2023)

    Google Scholar 

  13. Li, L., Shum, H.P., Breckon, T.P.: Less is more: Reducing task and model complexity for 3d point cloud semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9361–9371 (2023)

    Google Scholar 

  14. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8895–8904 (2019)

    Google Scholar 

  15. Liu, Y., Chen, R., Li, X., Kong, L., Yang, Y., Xia, Z., Bai, Y., Zhu, X., Ma, Y., Li, Y., et al.: Uniseg: A unified multi-modal lidar segmentation network and the openpcseg codebase. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 21662–21673 (2023)

    Google Scholar 

  16. Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: Fast and accurate lidar semantic segmentation. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS). pp. 4213–4220. IEEE (2019)

    Google Scholar 

  17. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision. pp. 1520–1528 (2015)

    Google Scholar 

  18. Pan, Y., Gao, B., Mei, J., Geng, S., Li, C., Zhao, H.: Semanticposs: A point cloud dataset with large quantity of dynamic instances. In: 2020 IEEE Intelligent Vehicles Symposium (IV). pp. 687–693. IEEE (2020)

    Google Scholar 

  19. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 652–660 (2017)

    Google Scholar 

  20. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  21. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1874–1883 (2016)

    Google Scholar 

  22. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine, B., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 2446–2454 (2020)

    Google Scholar 

  23. Tang, H., Liu, Z., Li, X., Lin, Y., Han, S.: Torchsparse: Efficient point cloud inference engine. Proceedings of Machine Learning and Systems 4, 302–315 (2022)

    Google Scholar 

  24. Tang, H., Liu, Z., Zhao, S., Lin, Y., Lin, J., Wang, H., Han, S.: Searching efficient 3d architectures with sparse point-voxel convolution. In: European conference on computer vision. pp. 685–702. Springer (2020)

    Google Scholar 

  25. Tang, H., Yang, S., Liu, Z., Hong, K., Yu, Z., Li, X., Dai, G., Wang, Y., Han, S.: Torchsparse++: Efficient point cloud engine. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 202–209 (2023)

    Google Scholar 

  26. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: Flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 6411–6420 (2019)

    Google Scholar 

  27. Wang, J., Chen, K., Xu, R., Liu, Z., Loy, C.C., Lin, D.: Carafe: Content-aware reassembly of features. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 3007–3016 (2019)

    Google Scholar 

  28. Wu, W., Qi, Z., Fuxin, L.: Pointconv: Deep convolutional networks on 3d point clouds. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition. pp. 9621–9630 (2019)

    Google Scholar 

  29. Wu, X., Jiang, L., Wang, P.S., Liu, Z., Liu, X., Qiao, Y., Ouyang, W., He, T., Zhao, H.: Point transformer v3: Simpler, faster, stronger. arXiv preprint arXiv:2312.10035 (2023)

  30. Xu, C., Wu, B., Wang, Z., Zhan, W., Vajda, P., Keutzer, K., Tomizuka, M.: SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_1

    Chapter  Google Scholar 

  31. Xu, J., Zhang, R., Dou, J., Zhu, Y., Sun, J., Pu, S.: Rpvnet: A deep and efficient range-point-voxel fusion network for lidar point cloud segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 16024–16033 (2021)

    Google Scholar 

  32. Zhang, Y., Zhou, Z., David, P., Yue, X., Xi, Z., Gong, B., Foroosh, H.: Polarnet: An improved grid representation for online lidar point clouds semantic segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 9601–9610 (2020)

    Google Scholar 

  33. Zhu, X., Zhou, H., Wang, T., Hong, F., Ma, Y., Li, W., Li, H., Lin, D.: Cylindrical and asymmetrical 3d convolution networks for lidar segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 9939–9948 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruigang Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Y., Fu, R., Hu, Q., Li, B., Zhong, P. (2025). Content-Aware Feature Upsampling for Voxel-Based 3D Semantic Segmentation. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15330. Springer, Cham. https://doi.org/10.1007/978-3-031-78113-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78113-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78112-4

  • Online ISBN: 978-3-031-78113-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics