Abstract
Accurate real-time object detection enhances the safety of advanced driver-assistance systems, making it an essential component in driving scenarios. With the rapid development of deep learning technology, CNN-based YOLO real-time object detectors have gained significant attention. However, the local focus of CNNs results in performance bottlenecks. To further enhance detector performance, researchers have introduced Transformer-based self-attention mechanisms to leverage global receptive fields, but their quadratic complexity incurs substantial computational costs. Recently, Mamba, with its linear complexity, has made significant progress through global selective scanning. Inspired by Mamba’s outstanding performance, we propose a novel object detector: DS MYOLO. This detector captures global feature information through a simplified selective scanning fusion block (SimVSS Block) and effectively integrates the network’s deep features. Additionally, we introduce an efficient channel attention convolution (ECAConv) that enhances cross-channel feature interaction while maintaining low computational complexity. Extensive experiments on the CCTSDB 2021 and VLD-45 driving scenarios datasets demonstrate that DS MYOLO exhibits significant potential and competitive advantage among similarly scaled YOLO series real-time object detectors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cheng, G., et al.: Towards large-scale small object detection: survey and benchmarks. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2023)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Cai, Z., Vasconcelos, N.: Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–750 (2018)
Tian, Z., Shen, C., Chen, H., He, T.: FCOS: a simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell. 44(4), 1922–1933 (2020)
Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)
Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023)
Jocher, G.: Ultralytics yolov8 (2023). https://github.com/ultralytics/ultralytics
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Jocher, G.: Yolov5 release v6.1 (2022). https://github.com/ultralytics/yolov5/releases/tag/v6.1
Li, C., et al.: Yolov6: a single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976 (2022)
Wang, C.Y., Yeh, I.H., Liao, H.Y.M.: Yolov9: learning what you want to learn using programmable gradient information. arXiv preprint arXiv:2402.13616 (2024)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Wang, A., et al.: Yolov10: real-time end-to-end object detection. arXiv preprint arXiv:2405.14458 (2024)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: European Conference on Computer Vision, pp. 213–229. Springer (2020)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: Eca-net: efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11534–11542 (2020)
Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)
Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13713–13722 (2021)
Gu, A., Dao, T.: Mamba: linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752 (2023)
Dao, T., Gu, A.: Transformers are SSMs: generalized models and efficient algorithms through structured state space duality. arXiv preprint arXiv:2405.21060 (2024)
Zhu, L., Liao, B., Zhang, Q., Wang, X., Liu, W., Wang, X.: Vision mamba: efficient visual representation learning with bidirectional state space model. arXiv preprint arXiv:2401.09417 (2024)
Wang, Z., Zheng, J.Q., Zhang, Y., Cui, G., Li, L.: Mamba-unet: unet-like pure visual mamba for medical image segmentation. arXiv preprint arXiv:2402.05079 (2024)
Pei, X., Huang, T., Xu, C.: Efficientvmamba: atrous selective scan for light weight visual mamba. arXiv preprint arXiv:2403.09977 (2024)
Zhang, J., Zou, X., Kuang, L.D., Wang, J., Sherratt, R.S., Yu, X.: Cctsdb 2021: a more comprehensive traffic sign detection benchmark. Human-centric Comput. Inf. Sci. 12 (2022)
Yang, S., Bo, C., Zhang, J., Gao, P., Li, Y., Serikawa, S.: Vld-45: a big dataset for vehicle logo recognition and detection. IEEE Trans. Intell. Transp. Syst. 23(12), 25567–25573 (2021)
Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: Cspnet: a new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 390–391 (2020)
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)
Wang, C., et al.: Gold-yolo: efficient object detector via gather-and-distribute mechanism. Adv. Neural Inf. Process. Syst. 36 (2024)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)
Meng, D., et al.: Conditional detr for fast training convergence. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3651–3660 (2021)
Liu, S., et al.: Dab-detr: dynamic anchor boxes are better queries for detr. arXiv preprint arXiv:2201.12329 (2022)
Wang, Y., Zhang, X., Yang, T., Sun, J.: Anchor detr: query design for transformer-based detector. Proc. AAAI Conf. Artif. Intell. 36, 2567–2575 (2022)
Li, F., Zhang, H., Liu, S., Guo, J., Ni, L.M., Zhang, L.: Dn-detr: accelerate detr training by introducing query denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13619–13627 (2022)
Chen, Q., et al.: Group detr: fast detr training with group-wise one-to-many assignment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6633–6642 (2023)
Zhao, Y., et al.: Detrs beat yolos on real-time object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16965–16974 (2024)
Pu, Y., et al.: Rank-detr for high quality object detection. Adv. Neural Inf. Process. Syst. 36 (2024)
Liu, Y., et al.: Vmamba: visual state space model. arXiv preprint arXiv:2401.10166 (2024)
Huang, T., Pei, X., You, S., Wang, F., Qian, C., Xu, C.: Localmamba: visual state space model with windowed selective scan. arXiv preprint arXiv:2403.09338 (2024)
Yu, W., Wang, X.: Mambaout: do we really need mamba for vision? arXiv preprint arXiv:2405.07992 (2024)
Shi, Y., Dong, M., Xu, C.: Multi-scale vmamba: hierarchy in hierarchy visual state space model. arXiv preprint arXiv:2405.14174 (2024)
Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: more features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1580–1589 (2020)
Li, H., Li, J., Wei, H., Liu, Z., Zhan, Z., Ren, Q.: Slim-neck by gsconv: a better design paradigm of detector architectures for autonomous vehicles. arXiv preprint arXiv:2206.02424 (2022)
Williams, T., Li, R.: Wavelet pooling for convolutional neural networks. In: International Conference on Learning Representations (2018)
Sunkara, R., Luo, T.: No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 443–459. Springer (2022)
Acknowledgements
This work is supported by China NSFC Program under Grant NO. 61603257.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Y., Xiao, J. (2025). DS MYOLO: A Reliable Object Detector Based on SSMs for Driving Scenarios. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15330. Springer, Cham. https://doi.org/10.1007/978-3-031-78113-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-78113-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78112-4
Online ISBN: 978-3-031-78113-1
eBook Packages: Computer ScienceComputer Science (R0)