Abstract
The implementation of data protection regulations such as the GDPR and the California Consumer Privacy Act has sparked a growing interest in removing sensitive information from pre-trained models without requiring retraining from scratch, all while maintaining predictive performance on remaining data. Recent studies on machine unlearning for deep neural networks have resulted in different attempts that put constraints on the training procedure and which are limited to small-scale architectures and with poor adaptability to real-world requirements. In this paper, we develop an approach to delete information on a class from a pre-trained model, by injecting a trainable low-rank decomposition into the network parameters, and without requiring access to the original training set. Our approach greatly reduces the number of parameters to train as well as time and memory requirements. This allows a painless application to real-life settings where the entire training set is unavailable, and compliance with the requirement of time-bound deletion. We conduct experiments on various Vision Transformer architectures for class forgetting. Extensive empirical analyses demonstrate that our proposed method is efficient, safe to apply, and effective in removing learned information while maintaining accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The classes that we consider are as follows: kite, mud turtle, triceratops, scorpion, peacock, goose, jellyfish, snail, flamingo, beagle.
References
Barsellotti, L., Amoroso, R., Cornia, M., Baraldi, L., Cucchiara, R.: Training-free open-vocabulary segmentation with offline diffusion-augmented prototype generation. In: CVPR (2024)
Baumhauer, T., Schöttle, P., Zeppelzauer, M.: Machine unlearning: linear filtration for logit-based classifiers. Mach. Learn. 111(9), 3203–3226 (2022)
Bontempo, G., Porrello, A., Bolelli, F., Calderara, S., Ficarra, E.: DAS-MIL: distilling across scales for MIL classification of histological WSIs. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. LNCS, vol. 14220, pp. 248–258. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_24
Bourtoule, L., et al.: Machine unlearning. In: IEEE S &P (2021)
Caffagni, D., et al.: The revolution of multimodal large language models: a survey. In: ACL Findings (2024)
Caffagni, D., et al.: Wiki-LLaVA: hierarchical retrieval-augmented generation for multimodal LLMs. In: CVPR Workshops (2024)
Cao, Y., Yang, J.: Towards making systems forget with machine unlearning. In: IEEE S &P (2015)
Cha, S., Cho, S., Hwang, D., Lee, H., Moon, T., Lee, M.: Learning to unlearn: instance-wise unlearning for pre-trained classifiers. In: AAAI (2024)
Chen, M., Gao, W., Liu, G., Peng, K., Wang, C.: Boundary unlearning. In: CVPR (2023)
Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M., Zhang, Y.: When machine unlearning jeopardizes privacy. In: ACM CCS (2021)
Chundawat, V.S., Tarun, A.K., Mandal, M., Kankanhalli, M.: Can bad teaching induce forgetting? Unlearning in deep networks using an incompetent teacher. In: AAAI (2023)
Chundawat, V.S., Tarun, A.K., Mandal, M., Kankanhalli, M.: Zero-shot machine unlearning. IEEE Trans. IFS 18, 2345–2354 (2023)
Cornia, M., Baraldi, L., Cucchiara, R.: Explaining transformer-based image captioning models: an empirical analysis. AI Commun. 35(2), 111–129 (2022)
Cucchiara, R., Baraldi, L., Cornia, M., Sarto, S.: Video surveillance and privacy: a solvable paradox? Computer 57(3), 91–100 (2024)
Dang, Q.V.: Right to be forgotten in the age of machine learning. In: ICADS (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)
Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: ICLR (2021)
Goddard, M.: The EU General Data Protection Regulation (GDPR): European Regulation that has a global impact. IJMR 59(6), 703–705 (2017)
Golatkar, A., Achille, A., Ravichandran, A., Polito, M., Soatto, S.: Mixed-privacy forgetting in deep networks. In: CVPR (2021)
Golatkar, A., Achille, A., Soatto, S.: Eternal sunshine of the spotless net: selective forgetting in deep networks. In: CVPR (2020)
Graves, L., Nagisetty, V., Ganesh, V.: Amnesiac machine learning. In: AAAI (2021)
Hayase, T., Yasutomi, S., Katoh, T.: Selective forgetting of deep networks at a finer level than samples. arXiv preprint arXiv:2012.11849 (2020)
Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)
Izzo, Z., Smart, M.A., Chaudhuri, K., Zou, J.: Approximate data deletion from machine learning models. In: AISTATS (2021)
Jia, J., et al.: Model sparsity can simplify machine unlearning. In: NeurIPS (2023)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)
Lin, S., Zhang, X., Chen, C., Chen, X., Susilo, W.: ERM-KTP: knowledge-level machine unlearning via knowledge transfer. In: CVPR (2023)
Liu, J., Xue, M., Lou, J., Zhang, X., Xiong, L., Qin, Z.: MUter: machine unlearning on adversarially trained models. In: ICCV (2023)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)
Luo, Z., Xu, X., Liu, F., Koh, Y.S., Wang, D., Zhang, J.: Privacy-preserving low-rank adaptation for latent diffusion models. arXiv preprint arXiv:2402.11989 (2024)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9(11), 2579–2605 (2008)
Neel, S., Roth, A., Sharifi-Malvajerdi, S.: Descent-to-Delete: gradient-based methods for machine unlearning. In: ALT (2021)
Nguyen, Q.P., Low, B.K.H., Jaillet, P.: Variational Bayesian unlearning. In: NeurIPS (2020)
Nguyen, T.T., Huynh, T.T., Nguyen, P.L., Liew, A.W.C., Yin, H., Nguyen, Q.V.H.: A survey of machine unlearning. arXiv preprint arXiv:2209.02299 (2022)
Pawelczyk, M., Neel, S., Lakkaraju, H.: In-context unlearning: language models as few shot unlearners. arXiv preprint arXiv:2310.07579 (2023)
Poppi, S., Cornia, M., Baraldi, L., Cucchiara, R.: Revisiting the evaluation of class activation mapping for explainability: a novel metric and experimental analysis. In: CVPR Workshops (2021)
Poppi, S., Poppi, T., Cocchi, F., Cornia, M., Baraldi, L., Cucchiara, R.: Safe-CLIP: removing NSFW concepts from vision-and-language models. In: ECCV (2024)
Poppi, S., Sarto, S., Cornia, M., Baraldi, L., Cucchiara, R.: Multi-class unlearning for image classification via weight filtering. IEEE Intell. Syst. (2024)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV (2017)
Sun, Y., Li, Z., Li, Y., Ding, B.: Improving loRA in privacy-preserving federated learning. In: ICLR (2024)
Tarun, A.K., Chundawat, V.S., Mandal, M., Kankanhalli, M.: Fast yet effective machine unlearning. IEEE Trans. NNLS (2023)
de la Torre, L.: A Guide to the California Consumer Privacy Act of 2018. Available at SSRN 3275571 (2018)
Wu, Y., Dobriban, E., Davidson, S.: DeltaGrad: rapid retraining of machine learning models. In: ICML (2020)
Yoon, Y., Nam, J., Yun, H., Kim, D., Ok, J.: Few-shot unlearning by model inversion. arXiv preprint arXiv:2205.15567 (2022)
Acknowledgments
This work has been conducted under a research grant co-funded by Leonardo S.p.A. and supported by the EU Horizon project “ELIAS - European Lighthouse of AI for Sustainability” (No. 101120237).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Poppi, S., Sarto, S., Cornia, M., Baraldi, L., Cucchiara, R. (2025). Unlearning Vision Transformers Without Retaining Data via Low-Rank Decompositions. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15303. Springer, Cham. https://doi.org/10.1007/978-3-031-78122-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-78122-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78121-6
Online ISBN: 978-3-031-78122-3
eBook Packages: Computer ScienceComputer Science (R0)