Skip to main content

MPGTSRN: Scene Text Image Super-Resolution Guided by Multiple Visual-Semantic Prompts

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Abstract

Scene text image super-resolution (STISR) aims at enhancing the visual clarity of a low-resolution text image for human perception or tasks like text recognition. In recent STISR work, various visual and semantic clues of the text play a key role in recovering the details of the text, but the utilization of different clues and their interactions is still insufficient, which often results in distorted or blurred appearances of the reconstructed text. To address this problem, we propose a multi-prompt guided text image super-resolution network (MPGTSRN). Specifically, we introduce multiple visual prompts for the text and combine them with semantic features to comprehensively capture the diverse characteristics of the text. We then propose a recurrent reconstruction network integrating multiple visual-semantic prompts to enhance the representation of the text and yield a high-resolution text image. We further propose a cross-representation attention mechanism that utilizes the complementarity of different prompts to guide the reconstruction network to adaptively focus on salient parts of the text and effectively improves the text details. The experimental results show the superiority of our proposed MPGTSRN in the STISR task.

M. Li and Z. Zhuang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bautista, D., Atienza, R.: Scene text recognition with permuted autoregressive sequence models. In: EECV, pp. 178–196. Springer (2022)

    Google Scholar 

  2. Chan, K.C., Wang, X., Xu, X., Gu, J., Loy, C.C.: GLEAN: generative latent bank for large-factor image super-resolution. In: CVPR, pp. 14240–14249 (2021)

    Google Scholar 

  3. Chen, J., Li, B., Xue, X.: Scene text telescope: text-focused scene image super-resolution. In: CVPR, pp. 12021–12030 (2021)

    Google Scholar 

  4. Chen, J., Yu, H., Ma, J., Li, B., Xue, X.: Text gestalt: stroke-aware scene text image super-resolution. In: AAAI. vol. 36, pp. 285–293 (2022)

    Google Scholar 

  5. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: CVPR, pp. 11030–11039 (2020)

    Google Scholar 

  6. Dong, C., Chen, C.L., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: ECCV, pp. 184–199 (2014)

    Google Scholar 

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE TPAMI 38(2), 295–307 (2016)

    Article  Google Scholar 

  8. Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Read like humans: autonomous, bidirectional and iterative language modeling for scene text recognition. In: CVPR, pp. 7098–7107 (2021)

    Google Scholar 

  9. Guo, H., Dai, T., Meng, G., Xia, S.T.: Towards robust scene text image super-resolution via explicit location enhancement. In: IJCAI, pp. 782–790 (2023)

    Google Scholar 

  10. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild with convolutional neural networks. IJCV 116(1), 1–20 (2016)

    Article  MathSciNet  Google Scholar 

  11. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp. 4681–4690 (2017)

    Google Scholar 

  12. Liang, J., Zeng, H., Zhang, L.: Details or artifacts: a locally discriminative learning approach to realistic image super-resolution. In: CVPR, pp. 5647–5656 (2022)

    Google Scholar 

  13. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: CVPRW, pp. 1132–1140 (2017)

    Google Scholar 

  14. Luo, C., Jin, L., Sun, Z.: MORAN: a multi-object rectified attention network for scene text recognition. PR 90, 109–118 (2019)

    Google Scholar 

  15. Ma, J., Guo, S., Zhang, L.: Text prior guided scene text image super-resolution. TIP 32, 1341–1353 (2023)

    Google Scholar 

  16. Ma, J., Liang, Z., Zhang, L.: A text attention network for spatial deformation robust scene text image super-resolution. In: CVPR, pp. 5901–5910 (2022)

    Google Scholar 

  17. Na, B., Kim, Y., Park, S.: Multi-modal text recognition networks: interactive enhancements between visual and semantic features. In: ECCV, pp. 446–463. Springer (2022)

    Google Scholar 

  18. Niu, B., et al.: Single image super-resolution via a holistic attention network. In: ECCV, pp. 191–207. Springer (2020)

    Google Scholar 

  19. Peyrard, C., Baccouche, M., Mamalet, F., Garcia, C.: ICDAR2015 competition on text image super-resolution. In: ICDAR, pp. 1201–1205 (2015)

    Google Scholar 

  20. Qi, Y., He, Y., Qi, X., Zhang, Y., Yang, G.: Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation. In: ICCV, pp. 6070–6079 (2023)

    Google Scholar 

  21. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE TPAMI 39(11), 2298–2304 (2016)

    Article  Google Scholar 

  22. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: ASTER: an attentional scene text recognizer with flexible rectification. IEEE TPAMI 41(9), 2035–2048 (2018)

    Article  Google Scholar 

  23. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR, pp. 1874–1883 (2016)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  25. Wang, W., et al.: Scene text image super-resolution in the wild. In: ECCV, pp. 650–666. Springer International Publishing, Cham (2020)

    Google Scholar 

  26. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13(4), 600–612 (2004)

    Google Scholar 

  27. Zhang, W., et al.: Pixel adapter: a graph-based post-processing approach for scene text image super-resolution. In: ACM MM, pp. 2168–2179 (2023)

    Google Scholar 

  28. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR, pp. 2472–2481 (2018)

    Google Scholar 

  29. Zhao, C., et al.: Scene text image super-resolution via parallelly contextual attention network. In: ACM MM, pp. 2908–2917 (2021)

    Google Scholar 

  30. Zhao, G., Lin, J., Zhang, Z., Ren, X., Su, Q., Sun, X.: Explicit sparse transformer: Concentrated attention through explicit selection (2019)

    Google Scholar 

  31. Zhao, M., Wang, M., Bai, F., Li, B., Wang, J., Zhou, S.: C3-STISR: scene text image super-resolution with triple clues. In: IJCAI, pp. 1707–1713 (2022)

    Google Scholar 

  32. Zhou, Y., Gao, L., Tang, Z., Wei, B.: Recognition-guided diffusion model for scene text image super-resolution. In: ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2940–2944 (2024). https://doi.org/10.1109/ICASSP48485.2024.10447585

  33. Zhu, X., Guo, K., Fang, H., Ding, R., Wu, Z., Schaefer, G.: Gradient-based graph attention for scene text image super-resolution. In: AAAI. vol. 37, pp. 3861–3869 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Zhuang, Z., Xu, S., Su, F. (2025). MPGTSRN: Scene Text Image Super-Resolution Guided by Multiple Visual-Semantic Prompts. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15332. Springer, Cham. https://doi.org/10.1007/978-3-031-78125-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78125-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78124-7

  • Online ISBN: 978-3-031-78125-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics