Skip to main content

Text-Guided Zero-Shot 3D Style Transfer of Neural Radiance Fields

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15308))

Included in the following conference series:

  • 280 Accesses

Abstract

3D style transfer aims to generate novel, stylized views while maintaining multi-view consistency. However, current approaches primarily focus on uniformly stylizing entire 3D scenes, limiting the versatility of 3D style transfer. To address this limitation, we propose Text Guided Zero-Shot 3D Style Transfer of Neural Radiance Fields (TGStyleRF), which incorporates the language radiance field into the 3D style transfer based on NeRF, enabling flexible stylization guided by text queries. By the language modeling of the 3D neural radiance field, the spatial position can be bounded with dense semantics, so as to stylize the 3D scene selectively through text-guided. Furthermore, our method leverages both low-level texture and high-level semantics to enhance localization quality. Experimental results demonstrate that, with the integration of the language model and Cross-Feature-Localization (CFL), TGStyleRF achieves greater flexibility and precision in stylization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: ICML (2018)

    Google Scholar 

  2. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)

    Google Scholar 

  3. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: tensorial radiance fields. In: ECCV (2022)

    Google Scholar 

  4. Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G.: Coherent online video style transfer. In: ICCV (2017)

    Google Scholar 

  5. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: CVPR (2019)

    Google Scholar 

  6. Cherti, M., : Reproducible scaling laws for contrastive language-image learning. In: CVPR (2023)

    Google Scholar 

  7. Deng, Y., Tang, F., Dong, W., Sun, W., Huang, F., Xu, C.: Arbitrary style transfer via multi-adaptation network. In: ACM MM (2020)

    Google Scholar 

  8. Fang, S., Xu, W., Wang, H., Yang, Y., Wang, Y., Zhou, S.: One is all: bridging the gap between neural radiance fields architectures with progressive volume distillation. In: AAAI (2023)

    Google Scholar 

  9. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)

    Google Scholar 

  10. Huang, H., et al.: Real-time neural style transfer for videos. In: CVPR (2017)

    Google Scholar 

  11. Huang, H.P., Tseng, H.Y., Saini, S., Singh, M., Yang, M.H.: Learning to stylize novel views. In: ICCV (2021)

    Google Scholar 

  12. Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: Deepmvs: learning multi-view stereopsis. In: CVPR (2018)

    Google Scholar 

  13. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)

    Google Scholar 

  14. Huang, Y.H., He, Y., Yuan, Y.J., Lai, Y.K., Gao, L.: Stylizednerf: consistent 3D scene stylization as stylized nerf via 2d-3d mutual learning. In: CVPR (2022)

    Google Scholar 

  15. Ji, M., Gall, J., Zheng, H., Liu, Y., Fang, L.: Surfacenet: an end-to-end 3D neural network for multiview stereopsis. In: ICCV (2017)

    Google Scholar 

  16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: ECCV (2016)

    Google Scholar 

  17. Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: ECCV (2018)

    Google Scholar 

  18. Kerr, J., Kim, C.M., Goldberg, K., Kanazawa, A., Tancik, M.: Lerf: language embedded radiance fields. In: ICCV (2023)

    Google Scholar 

  19. Kurzman, L., Vazquez, D., Laradji, I.: Class-based styling: real-time localized style transfer with semantic segmentation. In: ICCVW (2019)

    Google Scholar 

  20. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. In: IJCV (2000)

    Google Scholar 

  21. Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven semantic segmentation. arXiv preprint arXiv:2201.03546 (2022)

  22. Li, G., Yun, I., Kim, J., Kim, J.: Dabnet: depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv preprint arXiv:1907.11357 (2019)

  23. Li, X., Liu, S., Kautz, J., Yang, M.H.: Learning linear transformations for fast image and video style transfer. In: CVPR (2019)

    Google Scholar 

  24. Liu, K., et al.: Stylerf: zero-shot 3d style transfer of neural radiance fields. In: CVPR (2023)

    Google Scholar 

  25. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. In: TOG (2019)

    Google Scholar 

  26. Mu, F., Wang, J., Wu, Y., Li, Y.: 3d photo stylization: learning to generate stylized novel views from a single image. In: CVPR (2022)

    Google Scholar 

  27. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. In: ToG (2022)

    Google Scholar 

  28. Nguyen-Phuoc, T., Liu, F., Xiao, L.: Snerf: stylized neural implicit representations for 3d scenes. arXiv preprint arXiv:2207.02363 (2022)

  29. Niemeyer, M., Geiger, A.: Giraffe: representing scenes as compositional generative neural feature fields. In: CVPR (2021)

    Google Scholar 

  30. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: CVPR (2017)

    Google Scholar 

  31. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3d data. In: CVPR (2016)

    Google Scholar 

  32. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)

    Google Scholar 

  33. Schuhmann, C., et al.: LAION-5b: An open large-scale dataset for training next generation image-text models. In: NeurIPS (2022)

    Google Scholar 

  34. Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. In: IJCV (1999)

    Google Scholar 

  35. Shafiullah, N.M.M., Paxton, C., Pinto, L., Chintala, S., Szlam, A.: Clip-fields: weakly supervised semantic fields for robotic memory. arXiv preprint arXiv:2210.05663 (2022)

  36. Sheng, L., Lin, Z., Shao, J., Wang, X.: Avatar-net: multi-scale zero-shot style transfer by feature decoration. In: CVPR (2018)

    Google Scholar 

  37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  38. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: CVPR (2022)

    Google Scholar 

  39. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: generating 3d mesh models from single RGB images. In: ECCV (2018)

    Google Scholar 

  40. Wells, A., Wood, J., Xiao, M.: Localized style transfer

    Google Scholar 

  41. Wu, X., Hu, Z., Sheng, L., Xu, D.: Styleformer: real-time arbitrary style transfer via parametric style composition. In: ICCV (2021)

    Google Scholar 

  42. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: a deep representation for volumetric shapes. In: CVPR (2015)

    Google Scholar 

  43. Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. In: NeurIPS (2020)

    Google Scholar 

  44. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported partially by the Guangdong NSF Project (No. 2023B1515040025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Shi Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 15139 KB)

Supplementary material 2 (mp4 14371 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Zheng, WS. (2025). Text-Guided Zero-Shot 3D Style Transfer of Neural Radiance Fields. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15308. Springer, Cham. https://doi.org/10.1007/978-3-031-78186-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78186-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78185-8

  • Online ISBN: 978-3-031-78186-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics