Abstract
3D style transfer aims to generate novel, stylized views while maintaining multi-view consistency. However, current approaches primarily focus on uniformly stylizing entire 3D scenes, limiting the versatility of 3D style transfer. To address this limitation, we propose Text Guided Zero-Shot 3D Style Transfer of Neural Radiance Fields (TGStyleRF), which incorporates the language radiance field into the 3D style transfer based on NeRF, enabling flexible stylization guided by text queries. By the language modeling of the 3D neural radiance field, the spatial position can be bounded with dense semantics, so as to stylize the 3D scene selectively through text-guided. Furthermore, our method leverages both low-level texture and high-level semantics to enhance localization quality. Experimental results demonstrate that, with the integration of the language model and Cross-Feature-Localization (CFL), TGStyleRF achieves greater flexibility and precision in stylization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations and generative models for 3D point clouds. In: ICML (2018)
Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: tensorial radiance fields. In: ECCV (2022)
Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G.: Coherent online video style transfer. In: ICCV (2017)
Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: CVPR (2019)
Cherti, M., : Reproducible scaling laws for contrastive language-image learning. In: CVPR (2023)
Deng, Y., Tang, F., Dong, W., Sun, W., Huang, F., Xu, C.: Arbitrary style transfer via multi-adaptation network. In: ACM MM (2020)
Fang, S., Xu, W., Wang, H., Yang, Y., Wang, Y., Zhou, S.: One is all: bridging the gap between neural radiance fields architectures with progressive volume distillation. In: AAAI (2023)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR (2016)
Huang, H., et al.: Real-time neural style transfer for videos. In: CVPR (2017)
Huang, H.P., Tseng, H.Y., Saini, S., Singh, M., Yang, M.H.: Learning to stylize novel views. In: ICCV (2021)
Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: Deepmvs: learning multi-view stereopsis. In: CVPR (2018)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)
Huang, Y.H., He, Y., Yuan, Y.J., Lai, Y.K., Gao, L.: Stylizednerf: consistent 3D scene stylization as stylized nerf via 2d-3d mutual learning. In: CVPR (2022)
Ji, M., Gall, J., Zheng, H., Liu, Y., Fang, L.: Surfacenet: an end-to-end 3D neural network for multiview stereopsis. In: ICCV (2017)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: ECCV (2016)
Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: ECCV (2018)
Kerr, J., Kim, C.M., Goldberg, K., Kanazawa, A., Tancik, M.: Lerf: language embedded radiance fields. In: ICCV (2023)
Kurzman, L., Vazquez, D., Laradji, I.: Class-based styling: real-time localized style transfer with semantic segmentation. In: ICCVW (2019)
Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. In: IJCV (2000)
Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven semantic segmentation. arXiv preprint arXiv:2201.03546 (2022)
Li, G., Yun, I., Kim, J., Kim, J.: Dabnet: depth-wise asymmetric bottleneck for real-time semantic segmentation. arXiv preprint arXiv:1907.11357 (2019)
Li, X., Liu, S., Kautz, J., Yang, M.H.: Learning linear transformations for fast image and video style transfer. In: CVPR (2019)
Liu, K., et al.: Stylerf: zero-shot 3d style transfer of neural radiance fields. In: CVPR (2023)
Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. In: TOG (2019)
Mu, F., Wang, J., Wu, Y., Li, Y.: 3d photo stylization: learning to generate stylized novel views from a single image. In: CVPR (2022)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. In: ToG (2022)
Nguyen-Phuoc, T., Liu, F., Xiao, L.: Snerf: stylized neural implicit representations for 3d scenes. arXiv preprint arXiv:2207.02363 (2022)
Niemeyer, M., Geiger, A.: Giraffe: representing scenes as compositional generative neural feature fields. In: CVPR (2021)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: CVPR (2017)
Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3d data. In: CVPR (2016)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)
Schuhmann, C., et al.: LAION-5b: An open large-scale dataset for training next generation image-text models. In: NeurIPS (2022)
Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. In: IJCV (1999)
Shafiullah, N.M.M., Paxton, C., Pinto, L., Chintala, S., Szlam, A.: Clip-fields: weakly supervised semantic fields for robotic memory. arXiv preprint arXiv:2210.05663 (2022)
Sheng, L., Lin, Z., Shao, J., Wang, X.: Avatar-net: multi-scale zero-shot style transfer by feature decoration. In: CVPR (2018)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: CVPR (2022)
Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: generating 3d mesh models from single RGB images. In: ECCV (2018)
Wells, A., Wood, J., Xiao, M.: Localized style transfer
Wu, X., Hu, Z., Sheng, L., Xu, D.: Styleformer: real-time arbitrary style transfer via parametric style composition. In: ICCV (2021)
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: a deep representation for volumetric shapes. In: CVPR (2015)
Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. In: NeurIPS (2020)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Acknowledgements
This work was supported partially by the Guangdong NSF Project (No. 2023B1515040025).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, W., Zheng, WS. (2025). Text-Guided Zero-Shot 3D Style Transfer of Neural Radiance Fields. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15308. Springer, Cham. https://doi.org/10.1007/978-3-031-78186-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-78186-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78185-8
Online ISBN: 978-3-031-78186-5
eBook Packages: Computer ScienceComputer Science (R0)