Skip to main content

Plasticity Driven Knowledge Transfer for Continual Deep Reinforcement Learning in Financial Trading

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15309))

Included in the following conference series:

  • 171 Accesses

Abstract

The rapid growth in automated financial trading has highlighted the need for trustworthy agents capable of adapting to the dynamic and ever-changing nature of financial markets. From an algorithmic viewpoint, financial trading is essentially a complex, dynamic time series problem, characterized by unpredictable and noisy data. Deep Reinforcement Learning (DRL) has shown great promise in addressing this challenge. It naturally aligns with the objective of financial trading-maximizing rewards-without relying on unrealistic assumptions that do not hold true in such volatile and noisy time series data. However, the complexity of the problem still presents challenges for conventional DRL algorithms. To overcome these, the implementation of continual learning agents is crucial for their ability to adjust to changing market conditions. Our approach not only adapts continual learning techniques to dynamic time series but also introduces a novel knowledge transfer loss, which enhances the adaptation of our model. In our extensive evaluation, we show that this approach successfully balances the trade-off between maintaining knowledge of past patterns and adapting to new ones, enhancing the model’s trustworthiness and effectiveness in real-world time series problems, like financial trading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avramelou, L., Nousi, P., Passalis, N., Tefas, A.: Deep reinforcement learning for financial trading using multi-modal features. Expert Syst. Appl. 238, 121849 (2024). https://doi.org/10.1016/j.eswa.2023.121849, https://www.sciencedirect.com/science/article/pii/S0957417423023515

  2. Deng, Y., Bao, F., Kong, Y., Ren, Z., Dai, Q.: Deep direct reinforcement learning for financial signal representation and trading. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 653–664 (2017). https://doi.org/10.1109/TNNLS.2016.2522401

    Article  Google Scholar 

  3. Fama, E.: Efficient capital markets: a review of theory and empirical work. J. Finance 25, 383–417 (1970)

    Article  Google Scholar 

  4. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the International Conference on Machine Learning, pp. 1126–1135 (2017)

    Google Scholar 

  5. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  6. Isele, D., Cosgun, A.: Selective experience replay for lifelong learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  7. Keneshloo, Y., Shi, T., Ramakrishnan, N., Reddy, C.K.: Deep reinforcement learning for sequence-to-sequence models. IEEE Trans. Neural Netw. Learn. Syst. 31(7), 2469–2489 (2019)

    Google Scholar 

  8. Khetarpal, K., Riemer, M., Rish, I., Precup, D.: Towards continual reinforcement learning: a review and perspectives (2022)

    Google Scholar 

  9. Kiripatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017). https://doi.org/10.1073/pnas.1611835114

    Article  MathSciNet  Google Scholar 

  10. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning (2019)

    Google Scholar 

  11. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  12. Mermillod, M., Bugaiska, A., Bonin, P.: The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects. Front. Psychol. 4 (2013)

    Google Scholar 

  13. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  14. Moody, J.E., Saffell, M.: Reinforcement learning for trading systems and portfolios. In: Knowledge Discovery and Data Mining (1998)

    Google Scholar 

  15. Nguyen, T.H., Shirai, K., Velcin, J.: Sentiment analysis on social media for stock movement prediction. Expert Syst. Appl. 42(24), 9603–9611 (Nov2015). https://doi.org/10.1016/j.eswa.2015.07.052, https://hal.science/hal-01203094

  16. Oliveira, N., Cortez, P., Areal, N.: The impact of microblogging data for stock market prediction: Using twitter to predict returns, volatility, trading volume and survey sentiment indices. Expert Syst. Appl. 73 (12 2016). https://doi.org/10.1016/j.eswa.2016.12.036

  17. Passalis, N., Tefas, A.: Learning deep representations with probabilistic knowledge transfer. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 268–284 (2018)

    Google Scholar 

  18. Passalis, N., Tzelepi, M., Tefas, A.: Probabilistic knowledge transfer for lightweight deep representation learning. IEEE Trans. Neural Netw. Learn. Syst. 32(5), 2030–2039 (2020)

    Article  MathSciNet  Google Scholar 

  19. Pénasse, J.: Understanding alpha decay. Manage. Sci. 68(5), 3966–3973 (2022)

    Article  Google Scholar 

  20. Rusu, A.A., et al.: Policy distillation. arXiv preprint arXiv:1511.06295 (2015)

  21. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  22. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438 (2015)

  23. Tran, D.T., Iosifidis, A., Kanniainen, J., Gabbouj, M.: Temporal attention-augmented bilinear network for financial time-series data analysis. IEEE Trans. Neural Netw. Learn. Syst. 30(5), 1407–1418 (2018)

    Article  Google Scholar 

  24. Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., Iosifidis, A.: Forecasting stock prices from limit order book using convolutional neural networks. In: Proceedings of the IEEE International Conference on Business Informatics (2017). https://doi.org/10.1109/CBI.2017.23, iNT=sgn,”Tsantekidis, Avraam”; IEEE International Conference on Business Informatics ; Conference date: 01-01-1900

  25. Tsantekidis, A., Passalis, N., Toufa, A.S., Saitas Zarkias, K., Chairistanidis, S., Tefas, A.: Price trailing for financial trading using deep reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst. PP, 1–10 (06 2020). https://doi.org/10.1109/TNNLS.2020.2997523

  26. Xu, J., Zhu, Z.: Reinforced continual learning. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  27. Zhang, Z., Zohren, S., Roberts, S.: DeepLOB: deep convolutional neural networks for limit order books. IEEE Trans. Signal Process. 67(11), 3001–3012 (2019). https://doi.org/10.1109/tsp.2019.2907260

    Article  Google Scholar 

Download references

Acknowledgements

The research project “Energy Efficient and Trustworthy Deep Learning - DeepLET” is implemented in the framework of H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union -NextGenerationEU (H.F.R.I. Project Number: 016762).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Katsikas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katsikas, D., Passalis, N., Tefas, A. (2025). Plasticity Driven Knowledge Transfer for Continual Deep Reinforcement Learning in Financial Trading. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15309. Springer, Cham. https://doi.org/10.1007/978-3-031-78189-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78189-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78188-9

  • Online ISBN: 978-3-031-78189-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics