Abstract
Multi-label classification(MLC) is a machine learning problem where each instance may belong to more than one class at the same time. Due to overlapping classes and label-label correlation, solving MLC is very challenging. Further, class imbalance and computational time-complexity are also considered to be major issues. In this paper, we have proposed a novel multi-label classifier that addressed the aforementioned issues; termed as Binary-Tree based Mean-Averaging estimation for Multi-label classification (BT-MA (Code is available at: https://github.com/ml-lab-sau/BT-MA).). This proposed classifier takes distinct label-sets meta-feature into account for recovering data imbalance and employs the Divide-and-conquer strategy for resolving time-complexity issue. The experimental results on several benchmark data sets show that our proposed approach BT-MA is as competitive as other Multi-label classification approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
McCallum, A.K.: Multi-label text classification with a mixture model trained by EM. In: AAAI 99 Workshop on Text Learning, Citeseer (1999)
Zhang, M.-L., Zhou, Z.-H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)
Liu, J., et al.: ASUS-AICS/LibMultiLabel: A Library for Multi-Class and Multi-Label Text Classification. GitHub (2023). https://github.com/ASUS-AICS/LibMultiLabel
Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)
Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel text classification for automated tag suggestion. In: Proceedings of the ECML PKDD 2008 Discovery Challenge, Antwerp, Belgium, pp. 75–83 (2008)
Song, Y., Zhang, L., Giles, L.C.: A sparse gaussian processes classification framework for fast tag suggestions. In: Proceeding of the 17th ACM Conference on Information and Knowledge Management, Napa Valley, CA, pp. 93–102 (2008)
Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: De Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44794-6_4
Elisseeff, A., Weston, J.: Kernel methods for Multi-labelled classification and Categ orical regression problems. In: Neural Information Processing Systems (2001)
Qi, G.-J., Hua, X.-S., Rui, Y., Tang, J., Mei, T., Zhang, H.-J.: Correlative multi-label video annotation. In: Proceedings of the 15th ACM International Conference on Multimedia, Augsburg, Germany, pp. 17–26 (2007)
Gopal, S., Yang, Y.: Multilabel classification with meta-level features. In: Proceedings of the 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Geneva, Switzerland, pp. 315–322 (2010)
Zhu, S., Ji, X., Xu, W., Gong, Y.: Multi-labelled classification using maximum entropy method. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Salvador, Brazil, pp. 274–281 (2005)
Chekina, L., Rokach, L., Shapira, B.: Meta-learning for selecting a multi-label classification algorithm. In: 2011 IEEE 11th International Conference on Data Mining Workshops, pp. 220–227. IEEE (2011)
Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)
Tsoumakas, G., Vlahavas, I.: Random k-Labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_38
Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)
Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, vol. 14 (2001)
Tsoumakas, G., Katakis, I.: Multi-label classification. Data Warehousing and Mining: Concepts, Methodologies, Tools, and Applications: Concepts, Methodologies, Tools, and Applications 3, 64 (2008)
Bernardini, F.C., da Silva, R.B., Rodovalho, R.M., Meza, E.B.M.: Cardinality and density measures and their influence to multi-label learning methods. Submitted to Learning and Nonlinear Models (2014)
Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. (IJDWM) 3(3), 1–13 (2007)
Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2013)
Huang, J., et al.: Improving multi-label classification with missing labels by learning label-specific features. Inf. Sci. 492, 124–146 (2019)
Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73, 133–153 (2008)
Chen, W.J., Shao, Y.H., Li, C.N., Deng, N.Y.: MLTSVM: a novel twin support vector machine to multi-label learning. Pattern Recogn. 52, 61–74 (2016)
Khemchandani, R., Chandra, S.: Twin support vector machines for pattern classification. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 905–910 (2007)
Fan, Y., Liu, J., Tang, J., Liu, P., Lin, Y., Du, Y.: Learning correlation information for multi-label feature selection. Pattern Recogn. 145, 109899 (2024)
Kumar, S., Rastogi, R.: Low rank label subspace transformation for multi-label learning with missing labels. Inf. Sci. 596, 53–72 (2022)
Teng, Z., Cao, P., Huang, M., Gao, Z., Wang, X.: Multi-label borderline oversampling technique. Pattern Recogn. 145, 109953 (2024)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rastogi, R., Chowdhury, S. (2025). Binary-Tree Based Mean-Averaging Estimation for Multi-label Classification. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15310. Springer, Cham. https://doi.org/10.1007/978-3-031-78192-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-78192-6_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78191-9
Online ISBN: 978-3-031-78192-6
eBook Packages: Computer ScienceComputer Science (R0)