Abstract
Medical image segmentation is one of the domains where sufficient annotated data is not available. This necessitates the application of low-data frameworks like few-shot learning. Contemporary prototype-based frameworks often do not account for the variation in features within the support and query images, giving rise to a large variance in prototype alignment. In this work, we adopt a prototype-based self-supervised one-way one-shot learning framework using pseudo-labels generated from superpixels to learn the semantic segmentation task itself. We use a correlation-based probability score to generate a dynamic prototype for each query pixel from the bag of prototypes obtained from the support feature map. This weighting scheme helps to give a higher weightage to contextually related prototypes. We also propose a quadrant masking strategy in the downstream segmentation task by utilizing prior domain information to discard unwanted false positives. We present extensive experimentations and evaluations on abdominal CT and MR datasets to show that the proposed simple but potent framework performs at par with the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amac, M., Sencan, A., Baran, O., Ikizler-Cinbis, N., Cinbis, R.: MaskSplit: self-supervised meta-learning for few-shot semantic segmentation. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 428–438. IEEE Computer Society, Los Alamitos, CA, USA (2022). https://doi.org/10.1109/WACV51458.2022.00050, https://doi.ieeecomputersociety.org/10.1109/WACV51458.2022.00050
Araslanov, N., Roth, S.: Self-supervised augmentation consistency for adapting semantic segmentation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15379–15389. IEEE Computer Society, Los Alamitos, CA, USA (2021). https://doi.org/10.1109/CVPR46437.2021.01513, https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.01513
Bhunia, A.K., Bhunia, A.K., Ghose, S., Das, A., Roy, P.P., Pal, U.: A deep one-shot network for query-based logo retrieval. Pattern Recogn. 96, 106965 (2019). https://doi.org/10.1016/j.patcog.2019.106965
Chen, J., Gao, B.B., Lu, Z., Xue, J.H., Wang, C., Liao, Q.: APANet: adaptive prototypes alignment network for few-shot semantic segmentation. IEEE Trans. Multimedia 25, 1–1 (2022). https://doi.org/10.1109/TMM.2022.3174405
Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019). https://doi.org/10.1016/j.media.2019.101539
Ding, H., Sun, C., Tang, H., Cai, D., Yan, Y.: Few-shot medical image segmentation with cycle-resemblance attention. In: 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 2487–2496. IEEE Computer Society, Los Alamitos, CA, USA (Jan 2023).https://doi.org/10.1109/WACV56688.2023.00252, https://doi.ieeecomputersociety.org/10.1109/WACV56688.2023.00252
Dong, N., Xing, E.P.: Few-shot semantic segmentation with prototype learning. In: British Machine Vision Conference (2018)
Fan, Q., Pei, W., Tai, Y.W., Tang, C.K.: Self-support few-shot semantic segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, pp. 701–719. Springer Nature Switzerland, Cham (2022)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)
Gansbeke, W.V., Vandenhende, S., Georgoulis, S., Gool, L.V.: Unsupervised semantic segmentation by contrasting object mask proposals. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10032–10042. IEEE Computer Society, Los Alamitos, CA, USA (oct 2021). https://doi.org/10.1109/ICCV48922.2021.00990, https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00990
Gao, Z., et al.: Unsupervised representation learning for tissue segmentation in histopathological images: from global to local contrast. IEEE Trans. Medical Imaging 41(12), 3611–3623 (2022). https://doi.org/10.1109/TMI.2022.3191398
Guha Roy, A., Siddiqui, S., Pölsterl, S., Navab, N., Wachinger, C.: ‘squeeze & excite’ guided few-shot segmentation of volumetric images. Med. Image Anal. 59, 101587 (2020). https://doi.org/10.1016/j.media.2019.101587
Guizilini, V., Ramos, F.: Online self-supervised segmentation of dynamic objects. In: 2013 IEEE International Conference on Robotics and Automation, pp. 4720–4727 (2013). https://doi.org/10.1109/ICRA.2013.6631249
He, H., Zhang, J., Thuraisingham, B., Tao, D.: Progressive one-shot human parsing. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, February 2-9, 2021, pp. 1522–1530. AAAI Press (2021). https://ojs.aaai.org/index.php/AAAI/article/view/16243
Hoyer, L., Dai, D., Chen, Y., Koring, A., Saha, S., Gool, L.V.: Three ways to improve semantic segmentation with self-supervised depth estimation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11125–11135. IEEE Computer Society, Los Alamitos, CA, USA (Jun 2021). https://doi.org/10.1109/CVPR46437.2021.01098, https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.01098
Ji, X., Vedaldi, A., Henriques, J.: Invariant information clustering for unsupervised image classification and segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9864–9873. IEEE Computer Society, Los Alamitos, CA, USA (Nov 2019). https://doi.org/10.1109/ICCV.2019.00996, https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00996
Kavur, A.E., et al.: CHAOS challenge - combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 69, 101950 (2021). https://doi.org/10.1016/j.media.2020.101950
Li, G., Jampani, V., Sevilla-Lara, L., Sun, D., Kim, J., Kim, J.: Adaptive prototype learning and allocation for few-shot segmentation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8330–8339. IEEE Computer Society, Los Alamitos, CA, USA (Jun 2021). https://doi.org/10.1109/CVPR46437.2021.00823, https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00823
Liu, J., Bao, Y., Xie, G., Xiong, H., Sonke, J., Gavves, E.: Dynamic prototype convolution network for few-shot semantic segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11543–11552. IEEE Computer Society, Los Alamitos, CA, USA (Jun 2022). https://doi.org/10.1109/CVPR52688.2022.01126, https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01126
Liu, W., Zhang, C., Ding, H., Hung, T.Y., Lin, G.: Few-shot segmentation with optimal transport matching and message flow. IEEE Trans. Multimedia 1–12 (2022). https://doi.org/10.1109/TMM.2022.3187855
Liu, Y., Zhang, X., Zhang, S., He, X.: Part-aware prototype network for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 142–158. Springer, Cham (2020)
Okazawa, A.: Interclass prototype relation for few-shot segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, pp. 362–378. Springer Nature Switzerland, Cham (2022)
Ouali, Y., Hudelot, C., Tami, M.: Autoregressive unsupervised image segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 142–158. Springer, Cham (2020)
Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D.: Self-supervision with Superpixels: training few-shot medical image segmentation without annotation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 762–780. Springer, Cham (2020)
Ouyang, C., Biffi, C., Chen, C., Kart, T., Qiu, H., Rueckert, D.: Self-supervised learning for few-shot medical image segmentation. IEEE Trans. Med. Imaging 41(7), 1837–1848 (2022). https://doi.org/10.1109/TMI.2022.3150682
Rakelly, K., Shelhamer, E., Darrell, T., Efros, A.A., Levine, S.: Conditional networks for few-shot semantic segmentation. In: International Conference on Learning Representations (2018)
Rakelly, K., Shelhamer, E., Darrell, T., Efros, A.A., Levine, S.: Few-shot segmentation propagation with guided networks. arxiv preprint arxiv:abs/1806.07373 (2018)
Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. In: British Machine Vision Conference 2017, BMVC 2017, London, UK, September 4-7, 2017. BMVA Press (2017)
Siam, M., Oreshkin, B., Jagersand, M.: AMP: adaptive masked proxies for few-shot segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5248–5257. IEEE Computer Society, Los Alamitos, CA, USA (Nov 2019). https://doi.org/10.1109/ICCV.2019.00535, https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00535
Siam, M., Oreshkin, B.N.: Adaptive masked weight imprinting for few-shot segmentation. In: Workshop at the International Conference on Learning Representations (ICLR) (2019)
Singh, S., et al.: Self-supervised feature learning for semantic segmentation of overhead imagery. In: British Machine Vision Conference 2018, BMVC 2018, Newcastle, UK, September 3-6, 2018. pp. 102. BMVA Press (2018). http://bmvc2018.org/contents/papers/0345.pdf
Wang, H., Zhang, X., Hu, Y., Yang, Y., Cao, X., Zhen, X.: Few-shot semantic segmentation with democratic attention networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 730–746. Springer, Cham (2020)
Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9196–9205 (2019). https://doi.org/10.1109/ICCV.2019.00929
Wu, H., Xiao, F., Liang, C.: Dual contrastive learning with anatomical auxiliary supervision for few-shot medical image segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022, pp. 417–434. Springer Nature Switzerland, Cham (2022)
Yang, B., Liu, C., Li, B., Jiao, J., Ye, Q.: Prototype mixture models for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 763–778. Springer, Cham (2020)
Zhang, B., Xiao, J., Qin, T.: Self-guided and cross-guided learning for few-shot segmentation. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8308–8317. IEEE Computer Society, Los Alamitos, CA, USA (Jun 2021). https://doi.org/10.1109/CVPR46437.2021.00821, https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00821
Zhang, K., Zheng, Y., Deng, X., Jia, W., Lian, J., Chen, X.: Guided networks for few-shot image segmentation and fully connected CRFs. Electronics 9(9), 1508 (2020). https://doi.org/10.3390/electronics9091508, https://www.mdpi.com/2079-9292/9/9/1508
Zhang, X., Wei, Y., Yang, Y., Huang, T.S.: SG-One: similarity guidance network for one-shot semantic segmentation. IEEE Trans. Cybern. 50(9), 3855–3865 (2020). https://doi.org/10.1109/TCYB.2020.2992433
Zhu, K., Zhai, W., Zha, Z., Cao, Y.: Self-supervised tuning for few-shot segmentation. In: International Joint Conference on Artificial Intelligence (2020). https://api.semanticscholar.org/CorpusID:215744862
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Manna, S., Bhattacharya, S., Pal, U. (2025). Correlation Weighted Prototype-Based Self-supervised One-Shot Segmentation of Medical Images. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15310. Springer, Cham. https://doi.org/10.1007/978-3-031-78192-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-78192-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78191-9
Online ISBN: 978-3-031-78192-6
eBook Packages: Computer ScienceComputer Science (R0)