Skip to main content

Directed Brain Network Transformer for Psychiatric Diagnosis

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Abstract

Human brain is a complex organ that consists of billions of neurons and trillions of connections among the neurons. To describe the correlations among the time series of the brain regions, we model the brain as a functional brain network to diagnose psychosis. However, traditional methods of functional brain network construction are usually noisy and do not consider the causal relationships among brain regions. To obtain the causal relationships and improve diagnosis interpretability, we propose a directed brain network Transformer (DBNT) for psychiatric diagnosis. First, the causal relationships in the blood-oxygen-level-dependent time series of brain regions are extracted to generate a directed brain network. Then, the feature encoding method is proposed to obtain local and global features of the brain networks by using the DBNT. Experimental results demonstrate that the accuracy of DBNT increases by 8.1% and 6.4% compared to state-of-the-art methods on two large-scale brain network datasets. DBNT also highlights the brain regions associated with psychosis and provides interpretation for diagnosis.

Supported by the Program of Yunnan Key Laboratory of Intelligent Systems and Computing (202405AV340009) and Yunnan Fundamental Research Project (202401AT070462).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://fcon_1000.projects.nitrc.org/indi/abide/

  2. 2.

    http://fcon_1000.projects.nitrc.org/indi/adhd200/

References

  1. Bannadabhavi, A., Lee, S., Deng, W., Ying, R., Li, X.: Community-aware transformer for autism prediction in fmri connectome. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 287–297 (2023)

    Google Scholar 

  2. Bellec, P., Chu, C., Chouinard-Decorte, F., Benhajali, Y., Margulies, D.S., Craddock, R.C.: The neuro bureau adhd-200 preprocessed repository. NeuroImage pp. 275–286 (2017)

    Google Scholar 

  3. Canario, E., Chen, D., Biswal, B.: A review of resting-state fmri and its use to examine psychiatric disorders. Psychoradiology 1(1), 42–53 (2021)

    Article  Google Scholar 

  4. Craddock, C., Benhajali, Y., Chu, C., Chouinard, F., Evans, A., Jakab, A., Khundrakpam, B.S., Lewis, J.D., Li, Q., Milham, M.: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Front. Neuroinform. 7(27), 5 (2013)

    Google Scholar 

  5. Craddock, R.C., James, G.A., Holtzheimer, P.E., III., Hu, X.P., Mayberg, H.S.: A whole brain fmri atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)

    Article  Google Scholar 

  6. Cui, H., Dai, W., Zhu, Y., Kan, X., Gu, A.A.C., Lukemire, J., Zhan, L., He, L., Guo, Y., Yang, C.: Braingb: A benchmark for brain network analysis with graph neural networks. IEEE Trans. Med. Imaging 42(2), 493–506 (2022)

    Article  Google Scholar 

  7. Cui, H., Dai, W., Zhu, Y., Yang, C.: Interpretable graph neural networks for connectome-based brain disorder analysis. In: Proceedings of Medical Image Computing and Computer Assisted Intervention. p. 375-385 (2022)

    Google Scholar 

  8. Dai, W., Cui, H., Kan, X., Guo, Y., van Rooij, S., Yang, C.: Transformer-based hierarchical clustering for brain network analysis. In: Proceedings of The IEEE International Symposium on Biomedical Imaging. pp. 1–5 (2023)

    Google Scholar 

  9. Delvigne, V., Wannous, H., Vandeborre, J.P., Ris, L.: Spatio-temporal analysis of transformer based architecture for attention estimation from eeg. In: Proceedings of International Conference on Pattern Recognition. pp. 1076–1082 (2022)

    Google Scholar 

  10. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S.: An image is worth 16x16 words: Transformers for image recognition at scale. In: Proceedings of International Conference on Learning Representations (2021)

    Google Scholar 

  11. Kan, X., Cui, H., Lukemire, J., Yang, C.: Fbnetgen: Task-aware gnn-based fmri analysis via functional brain network generation. In: Proceedings of International Conference on Medical Imaging with Deep Learning. pp. 618–637 (2022)

    Google Scholar 

  12. Kan, X., Dai, W., Yang, C.J.: Brain network transformer. In: Proceedings of Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  13. Kawahara, J., Brown, C.J., Miller, S.P., Booth, B.G., Chau, V., Grunau, R.E., Zwicker, J.G.: Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)

    Article  Google Scholar 

  14. Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., Tossou, P.: Rethinking graph transformers with spectral attention. In: Proceedings of Advances in Neural Information Processing Systems. vol. 34, pp. 21618–21629 (2021)

    Google Scholar 

  15. Krystal, J.H.: Psychiatric disorders: diagnosis to therapy. Cell 157(1), 201–214 (2014)

    Article  Google Scholar 

  16. Li, L., Duan, L., Wang, J., He, C., Chen, Z., Xie, G., Deng, S., Luo, Z.: Memory-enhanced transformer for representation learning on temporal heterogeneous graphs. Data Science and Engineering 8(2), 98–111 (2023)

    Article  Google Scholar 

  17. Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., Scheinost, D., Staib, L.H., Ventola, P., Duncan, J.S.: Braingnn: Interpretable brain graph neural network for fmri analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  18. Scangos, K.W., State, M.W., Miller, A.H., Baker, J.T.: New and emerging approaches to treat psychiatric disorders. Nat. Med. 29(2), 317–333 (2023)

    Article  Google Scholar 

  19. Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., Cummings, J., van der Flier, W.M.: Alzheimer’s disease. The Lancet 397(10284), 1577–1590 (2021)

    Article  Google Scholar 

  20. Shojaie, A., Fox, E.B.: Granger causality: A review and recent advances. Annual Review of Statistics and Its Application 9, 289–319 (2022)

    Article  MathSciNet  Google Scholar 

  21. Tong, Y., Li, Z., Huang, H., Gao, L., Xu, M., Hu, Z.: Research of spatial context convolutional neural networks for early diagnosis of alzheimer’s disease. The Journal of Supercomputing pp. 1–19 (2023)

    Google Scholar 

  22. Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., Li, Y.: Maxvit: Multi-axis vision transformer. In: Proceedings of European conference on computer vision. pp. 459–479 (2022)

    Google Scholar 

  23. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: Proceedings of The International Conference on Learning Representations (2018)

    Google Scholar 

  24. Wu, Q., Lei, H., Mao, T., Deng, Y., Zhang, X., Jiang, Y., Zhong, X.: Test-retest reliability of resting brain small-world network properties across different data processing and modeling strategies. Brain Sci. 13(5), 825 (2023)

    Article  Google Scholar 

  25. Xia, M., Wang, J., He, Y.: Brainnet viewer: a network visualization tool for human brain connectomics. PLoS ONE 8(7), 689–699 (2013)

    Article  Google Scholar 

  26. Yu, Y., Kan, X., Cui, H., Xu, R., Zheng, Y., Song, X., Zhu, Y., Zhang, K.: Deep dag learning of effective brain connectivity for fmri analysis. In: Proceedings of IEEE International Symposium on Biomedical Imaging. pp. 1–5 (2023)

    Google Scholar 

  27. Zhang, R., Volkow, N.D.: Seasonality of brain function: role in psychiatric disorders. Transl. Psychiatry 13(1), 65 (2023)

    Article  Google Scholar 

  28. Zhdanov, M., Steinmann, S., Hoffmann, N.: Investigating brain connectivity with graph neural networks and gnnexplainer. In: Proceedings of International Conference on Pattern Recognition. pp. 5155–5161 (2022)

    Google Scholar 

  29. Zheng, K., Yu, S., Chen, B.: Ci-gnn: A granger causality-inspired graph neural network for interpretable brain network-based psychiatric diagnosis. arXiv preprint arXiv:2301.01642 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, X., Qi, Z., Yue, K., Su, Y., Duan, L. (2025). Directed Brain Network Transformer for Psychiatric Diagnosis. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15311. Springer, Cham. https://doi.org/10.1007/978-3-031-78195-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78195-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78194-0

  • Online ISBN: 978-3-031-78195-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics