Abstract
Ultrasound (US) technology has revolutionized prenatal care by offering noninvasive, real-time visualization of maternal-fetal anatomy. The accurate classification of maternal-fetal US planes is a critical segment of effective prenatal diagnosis. However, the inherent inter-class variance among different fetal US images presents a significant hurdle, making fetal anatomy detection a laborious and time-consuming task, even for experienced sonographers. This paper proposes a novel approach using a Hybrid Vision Transformer (H-ViT) for automated fetal anatomical plane classification to address these challenges. The proposed method utilizes hierarchical features extracted from DenseNet-121, which are then inputted into the vision transformer to analyze complex spatial relationships and patterns within fetal US images. By incorporating both global and local features, the proposed method enhances feature discriminability, thus alleviating low inter-class variance. The effectiveness of the H-ViT is evaluated using the largest publicly available maternal-fetal US image dataset. The experimental results rigorously demonstrate the superiority of our approach, achieving an accuracy of 96.60% compared to other state-of-the-art techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wells, P.N.: Ultrasound imaging. Physics in Medicine & Biology 51(13), R83 (2006)
Levine, D.: Ultrasound versus magnetic resonance imaging in fetal evaluation. Top. Magn. Reson. Imaging 12(1), 25–38 (2001)
Huang, Q., Zeng, Z., et al.: A review on real-time 3D ultrasound imaging technology. BioMed Research International 2017 (2017)
Meng, L., Zhao, D., Yang, Z., Wang, B.: Automatic display of fetal brain planes and automatic measurements of fetal brain parameters by transabdominal three-dimensional ultrasound. J. Clin. Ultrasound 48(2), 82–88 (2020)
Hadlock, F.P., Harrist, R., Sharman, R.S., Deter, R.L., Park, S.K.: Estimation of fetal weight with the use of head, body, and femur measurements–a prospective study. Am. J. Obstet. Gynecol. 151(3), 333–337 (1985)
Turan, S., Miller, J., Baschat, A.A.: Integrated testing and management in fetal growth restriction. In: Seminars in Perinatology. vol. 32, pp. 194–200. Elsevier (2008)
Nicolaides, K.H., Syngelaki, A., Ashoor, G., Birdir, C., Touzet, G.: Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population. Am. J. Obstet. Gynecol. 207(5), 374-e1 (2012)
Burgos-Artizzu, X.P., Coronado-Gutierrez, D., Valenzuela-Alcaraz, B., Bonet-Carne, E., Eixarch, E., Crispi, F., Gratacós, E.: FETAL_PLANES_DB: Common maternal-fetal ultrasound images (Jun 2020), https://doi.org/10.5281/zenodo.3904280
Krishna, T.B., Kokil, P.: Standard fetal ultrasound plane classification based on stacked ensemble of deep learning models. Expert Syst. Appl. 238, 122153 (2024)
Fiorentino, M.C., Villani, F.P., Di Cosmo, M., Frontoni, E., Moccia, S.: A review on deep-learning algorithms for fetal ultrasound-image analysis. Med. Image Anal. 83, 102629 (2023)
Liu, S., Wang, Y., Yang, X., Lei, B., Liu, L., Li, S.X., Ni, D., Wang, T.: Deep learning in medical ultrasound analysis: A review. Engineering 5(2), 261–275 (2019)
Burgos-Artizzu, X.P., Coronado-Gutiérrez, D., Valenzuela-Alcaraz, B., Bonet-Carne, E., Eixarch, E., Crispi, F., Gratacós, E.: Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes. Sci. Rep. 10(1), 10200 (2020)
Sridar, P., Kumar, A., Quinton, A., Nanan, R., Kim, J., Krishnakumar, R.: Decision fusion-based fetal ultrasound image plane classification using convolutional neural networks. Ultrasound in Medicine & Biology 45(5), 1259–1273 (2019)
Rasheed, K., Junejo, F., Malik, A., Saqib, M.: Automated fetal head classification and segmentation using ultrasound video. IEEE Access 9, 160249–160267 (2021)
Krishna, T.B., Kokil, P.: Automated detection of common maternal fetal ultrasound planes using deep feature fusion. In: IEEE 19th India Council International Conference (INDICON). pp. 1–5. Kochi, India (2022)
Yu, Z., Tan, E.L., Ni, D., Qin, J., Chen, S., Li, S., Lei, B., Wang, T.: A deep convolutional neural network-based framework for automatic fetal facial standard plane recognition. IEEE J. Biomed. Health Inform. 22(3), 874–885 (2017)
Baumgartner, C.F., Kamnitsas, K., Matthew, J., Fletcher, T.P., Smith, S., Koch, L.M., Kainz, B., Rueckert, D.: SonoNet: Real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans. Med. Imaging 36(11), 2204–2215 (2017)
Yang, X., Ni, D., Qin, J., Li, S., Wang, T., Chen, S., Heng, P.A.: Standard plane localization in ultrasound by radial component. In: 11th International Symposium on Biomedical Imaging (ISBI). pp. 1180–1183. IEEE (2014)
Lei, B., Zhuo, L., Chen, S., Li, S., Ni, D., Wang, T.: Automatic recognition of fetal standard plane in ultrasound image. In: 11th International Symposium on Biomedical Imaging (ISBI). pp. 85–88. IEEE (2014)
Pu, B., Li, K., Li, S., Zhu, N.: Automatic fetal ultrasound standard plane recognition based on deep learning and IIoT. IEEE Trans. Industr. Inf. 17(11), 7771–7780 (2021)
Krishna, T.B., Kokil, P.: Automated classification of common maternal fetal ultrasound planes using multi-layer perceptron with deep feature integration. Biomed. Signal Process. Control 86, 105283 (2023)
Sindhu, K.G., R, A.: Ensemble-based advancements in maternal fetal plane and brain plane classification for enhanced prenatal diagnosis. International Journal of Information Technology pp. 1–17 (2024)
Krishna, T.B., Kokil, P.: Integration of a deep convolutional neural network with adaptive channel weight technique for automated identification of standard fetal biometry planes. IEEE Trans. Instrum. Meas. 73, 1–11 (2024)
Ma’Sum, M.A., Jatmiko, W., Tawakal, M.I., Al Afif, F.: Automatic fetal organs detection and approximation in ultrasound image using boosting classifier and Hough transform. In: International Conference on Advanced Computer Science and Information System. pp. 460–467. IEEE (2014)
Yang, S., Xiao, W., Zhang, M., Guo, S., Zhao, J., Shen, F.: Image data augmentation for deep learning: A survey. arXiv preprint arXiv:2204.08610 (2022)
Thabtah, F., Hammoud, S., Kamalov, F., Gonsalves, A.: Data imbalance in classification: Experimental evaluation. Inf. Sci. 513, 429–441 (2020)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4700–4708 (2017)
Varshni, D., Thakral, K., Agarwal, L., Nijhawan, R., Mittal, A.: Pneumonia detection using CNN based feature extraction. In: International Conference on Electrical, Computer and Communication Technologies (ICECCT). pp. 1–7. IEEE (2019)
Chen, C.F.R., Fan, Q., Panda, R.: Crossvit: Cross-attention multi-scale vision transformer for image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 357–366 (2021)
Angelina, C.L., Chou, Y.K., Lee, T.C., Kongkam, P., Han, M.L., Wang, H.P., Chang, H.T.: Hybrid vision transformer for classification of pancreatic cystic lesions on confocal laser endomicroscopy videos. In: International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan). pp. 47–48. IEEE (2023)
Duarte-Salazar, C.A., Castro-Ospina, A.E., Becerra, M.A., Delgado-Trejos, E.: Speckle noise reduction in ultrasound images for improving the metrological evaluation of biomedical applications: An overview. IEEE Access 8, 15983–15999 (2020)
Tuthill, T., Sperry, R., Parker, K.: Deviations from Rayleigh statistics in ultrasonic speckle. Ultrason. Imaging 10(2), 81–89 (1988)
Ghabri, H., Alqahtani, M.S., Ben Othman, S., Al-Rasheed, A., Abbas, M., Almubarak, H.A., Sakli, H., Abdelkarim, M.N.: Transfer learning for accurate fetal organ classification from ultrasound images: A potential tool for maternal healthcare providers. Sci. Rep. 13(1), 17904 (2023)
Sendra-Balcells, C., Campello, V.M., Torrents-Barrena, J., Ahmed, Y.A., Elattar, M., Ohene-Botwe, B., Nyangulu, P., Stones, W., Ammar, M., Benamer, L.N., et al.: Generalisability of fetal ultrasound deep learning models to low-resource imaging settings in five African countries. Sci. Rep. 13(1), 2728 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Krishna, T.B., Poreddy, A.K.R., Sindhu, K.G., Kokil, P. (2025). Automated Maternal Fetal Ultrasound Image Identification Using a Hybrid Vision Transformer Model. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15311. Springer, Cham. https://doi.org/10.1007/978-3-031-78195-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-78195-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78194-0
Online ISBN: 978-3-031-78195-7
eBook Packages: Computer ScienceComputer Science (R0)