Skip to main content

Applying Layer-Wise Relevance Propagation on U-Net Architectures

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Abstract

For safety critical applications, it is still a challenge to use AI and fulfill all regulatory requirements. Medicine/healthcare and transportation are two fields where regulatory requirements are of fundamental importance. A wrong decision can lead to serious hazards or even deaths. In these fields, semantic segmentation is often utilized to extract features. Especially U-Net architectures are used. This paper shows how to apply layer-wise relevance propagation (LRP) to a trained U-Net architecture. We achieve an efficient explanation of a segmentation by back-propagating the whole resulting image. To tackle the non-linear results of the LRP, we introduce a threshold mechanism in combination with a logarithmic transfer function to preprocess the data for visualization. We demonstrate our method on three use cases: the segmentation of a fiber-reinforced polymer in the field of non-destructive testing, the segmentation of pedestrians in an automotive application, and a lung segmentation example from the medical domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-hammuri, K., Gebali, F., Kanan, A., Chelvan, I.T.: Vision transformer architecture and applications in digital health: a tutorial and survey. Visual Computing for Industry, Biomedicine, and Art 6(1) (2023). https://doi.org/10.1186/s42492-023-00140-9

  2. Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M.A., Al-Amidie, M., Farhan, L.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data 8(1) (2021). https://doi.org/10.1186/s40537-021-00444-8

  3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7) (2015). https://doi.org/10.1371/journal.pone.0130140

  4. Candemir, S., Jaeger, S., Palaniappan, K., Musco, J.P., Singh, R.K., Xue, Z., Karargyris, A., Antani, S., Thoma, G., McDonald, C.J.: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans. Med. Imaging 33(2), 577–590 (2014). https://doi.org/10.1109/TMI.2013.2290491

    Article  Google Scholar 

  5. Cardoso, M.J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., Murray, B., Myronenko, A., Zhao, C., Yang, D., Nath, V., He, Y., Xu, Z., Hatamizadeh, A., Zhu, W., Liu, Y., Zheng, M., Tang, Y., Yang, I., Zephyr, M., Hashemian, B., Alle, S., Zalbagi Darestani, M., Budd, C., Modat, M., Vercauteren, T., Wang, G., Li, Y., Hu, Y., Fu, Y., Gorman, B., Johnson, H., Genereaux, B., Erdal, B.S., Gupta, V., Diaz-Pinto, A., Dourson, A., Maier-Hein, L., Jaeger, P.F., Baumgartner, M., Kalpathy-Cramer, J., Flores, M., Kirby, J., Cooper, L.A., Roth, H.R., Xu, D., Bericat, D., Floca, R., Zhou, S.K., Shuaib, H., Farahani, K., Maier-Hein, K.H., Aylward, S., Dogra, P., Ourselin, S., Feng, A.: MONAI: An open-source framework for deep learning in healthcare (2022). https://doi.org/10.48550/arXiv.2211.02701

  6. Chattopadhyay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: Improved visual explanations for deep convolutional networks. In: IEEE Winter Conference on Applications of Computer Vision (WACV). pp. 839–847 (2018). https://doi.org/10.1109/WACV.2018.00097

  7. Chen, H., Lundberg, S., Lee, S.I.: Explaining models by propagating shapley values of local components. Studies in Computational Intelligence 914, 261–270 (2021). https://doi.org/10.1007/978-3-030-53352-6_24

    Article  Google Scholar 

  8. Chlebus, G., Abolmaali, N., Schenk, A., Meine, H.: Relevance analysis of MRI sequences for automatic liver tumor segmentation (2019), http://arxiv.org/abs/1907.11773

  9. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp. 3213–3223 (2016). https://doi.org/10.1109/CVPR.2016.350

  10. Dardouillet, P., Benoit, A., Amri, E., Bolon, P., Dubucq, D., Credoz, A.: Explainability of image semantic segmentation through shap values. In: Rousseau, J.J., Kapralos, B. (eds.) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. pp. 188–202. Springer Nature Switzerland, Cham (2023)

    Google Scholar 

  11. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: 9th International Conference on Learning Representations, ICLR 2021 (2021), https://openreview.net/forum?id=YicbFdNTTy

  12. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. Lect. Notes Comput. Sci. 10008, 179–187 (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  14. Jaeger, S., Karargyris, A., Candemir, S., Folio, L., Siegelman, J., Callaghan, F., Xue, Z., Palaniappan, K., Singh, R.K., Antani, S., Thoma, G., Wang, Y.X., Lu, P.X., McDonald, C.J.: Automatic tuberculosis screening using chest radiographs. IEEE Trans. Med. Imaging 33(2), 233–245 (2014). https://doi.org/10.1109/TMI.2013.2284099

    Article  Google Scholar 

  15. Karen, S., Andrew, Z.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations (ICLR) Conference Track Proceedings. p. 14 (2015), http://arxiv.org/abs/1409.1556

  16. Kauffmann, J., Esders, M., Ruff, L., Montavon, G., Samek, W., Muller, K.R.: From clustering to cluster explanations via neural networks. IEEE Transactions on Neural Networks and Learning Systems (2022). https://doi.org/10.1109/TNNLS.2022.3185901

    Article  Google Scholar 

  17. Ker, J., Wang, L., Rao, J., Lim, T.: Deep learning applications in medical image analysis. IEEE Access 6, 9375–9389 (2017). https://doi.org/10.1109/ACCESS.2017.2788044

    Article  Google Scholar 

  18. Kokhlikyan, N., Miglani, V., Martin, M., Wang, E., Alsallakh, B., Reynolds, J., Melnikov, A., Kliushkina, N., Araya, C., Yan, S., Reblitz-Richardson, O.: Captum: A unified and generic model interpretability library for PyTorch (2020)

    Google Scholar 

  19. Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer : hierarchical vision transformer using shifted windows. Proceedings of the IEEE International Conference on Computer Vision pp. 9992–10002 (2021)

    Google Scholar 

  20. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for the 2020s (2022), https://arxiv.org/abs/2201.03545

  21. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS’17, vol. 31, p. 4768-4777. Curran Associates Inc., Red Hook, NY, USA (2017)

    Google Scholar 

  22. Mall, P.K., Singh, P.K., Srivastav, S., Narayan, V., Paprzycki, M., Jaworska, T., Ganzha, M.: A comprehensive review of deep neural networks for medical image processing: Recent developments and future opportunities. Healthcare Analytics 4 (2023). https://doi.org/10.1016/j.health.2023.100216

  23. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.R.: Layer-Wise Relevance Propagation: An Overview, pp. 193–209. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_10

  24. Mubashar, M., Ali, H., Grönlund, C., Azmat, S.: R2u++: a multiscale recurrent residual u-net with dense skip connections for medical image segmentation. Neural Comput. Appl. 34(20), 17723–17739 (2022). https://doi.org/10.1007/s00521-022-07419-7

    Article  Google Scholar 

  25. Ribeiro, M.T., Singh, S., Guestrin, C.: "why should i trust you?" explaining the predictions of any classifier. NAACL-HLT 2016 - 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Demonstrations Session pp. 97–101 (2016). https://doi.org/10.18653/v1/n16-3020

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). pp. 234–241. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  27. Samek, W., Wiegand, T., Müller, K.R.: Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models (2017), https://arxiv.org/abs/1708.08296

  28. Saranya, A., Subhashini, R.: A systematic review of explainable artificial intelligence models and applications: Recent developments and future trends. Decision Analytics Journal 7 (2023). https://doi.org/10.1016/j.dajour.2023.100230

  29. Schnurr, A.K., Schoeben, M., Hermann, I., Schmidt, R., Chlebus, G., Schad, L.R., Gass, A., Zoellner, F.G.: Relevance analysis of MRI sequences for MS lesion detection. In: European Society of Magnetic Resonance in Medicine and Biology. vol. 20 (2019)

    Google Scholar 

  30. Schorr, C., Goodarzi, P., Chen, F., Dahmen, T.: Neuroscope: An explainable AI toolbox for semantic segmentation and image classification of convolutional neural nets. Applied Sciences (Switzerland) 11(5), 1–16 (2021). https://doi.org/10.3390/app11052199

    Article  Google Scholar 

  31. Schwalbe, G., Finzel, B.: A comprehensive taxonomy for explainable artificial intelligence: a systematic survey of surveys on methods and concepts. Data Min. Knowl. Disc. (2023). https://doi.org/10.1007/s10618-022-00867-8

    Article  Google Scholar 

  32. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: Visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision. pp. 618–626 (2017). https://doi.org/10.1109/ICCV.2017.74

  33. Sheu, R.K., Pardeshi, M.S.: A survey on medical explainable ai (xai): Recent progress, explainability approach, human interaction and scoring system. Sensors 22(20) (2022). https://doi.org/10.3390/s22208068

  34. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (xai): Toward medical xai. IEEE Transactions on Neural Networks and Learning Systems 32(11), 4793–4813 (2021). https://doi.org/10.1109/tnnls.2020.3027314

    Article  Google Scholar 

  35. Tjoa, E., Heng, G., Yuhao, L., Guan, C.: Enhancing the extraction of interpretable information for ischemic stroke imaging from deep neural networks (2019), https://arxiv.org/abs/1911.08136

  36. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017). https://doi.org/10.48550/arXiv.1706.03762

  37. Yang, J., Li, S., Wang, Z., Dong, H., Wang, J., Tang, S.: Using deep learning to detect defects in manufacturing: A comprehensive survey and current challenges. Materials 13, 5755 (2020). https://doi.org/10.3390/ma13245755

    Article  Google Scholar 

  38. Zhang, H., Zhong, X., Li, G., Liu, W., Liu, J., Ji, D., Li, X., Wu, J.: BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation. Comput. Biol. Med. 159, 106960 (2023). https://doi.org/10.1016/j.compbiomed.2023.106960

    Article  Google Scholar 

  39. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018). https://doi.org/10.1109/lgrs.2018.2802944

    Article  Google Scholar 

  40. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. Lect. Notes Comput. Sci. 11045, 3–11 (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Article  Google Scholar 

  41. Zimmermann, R.S., Borowski, J., Geirhos, R., Bethge, M., Wallis, T.S., Brendel, W.: How well do feature visualizations support causal understanding of CNN activations? In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems. vol. 34, pp. 11730–11744. Curran Associates, Inc. (2021), https://neurips.cc/virtual/2021/poster/27775

Download references

Acknowledgment

The research leading to these results has received funding by research subsidies granted by the government of Upper Austria within the projects “X-PRO”, as well as “XPlain”, grant no. 895981. The research has also been supported by the European Regional Development Fund in frame of the project Pemowe (BA0100107) in the INTERREG Programm Bayern-Österreich 2021-2027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Weinberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weinberger, P., Fröhler, B., Heim, A., Gall, A., Bodenhofer, U., Senck, S. (2025). Applying Layer-Wise Relevance Propagation on U-Net Architectures. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15312. Springer, Cham. https://doi.org/10.1007/978-3-031-78198-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78198-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78197-1

  • Online ISBN: 978-3-031-78198-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics