Skip to main content

AI-Enhanced Decision-Making in Childhood Obesity Interventions

  • Conference paper
  • First Online:
Decision Sciences (DSA ISC 2024)

Abstract

Childhood obesity represents a global public health challenge. This study employs artificial intelligence (AI) to enhance decision-making in pediatric interventions against obesity. A predictive model was developed using data from children participating in an obesity intervention program at the Pediatric Service of the Elx-Crevillent Health Department to identify which type of patient achieves a successful outcome after a standard obesity intervention. The results demonstrate the potential of AI to improve personalized healthcare and optimize resources in combating childhood obesity, specifically in defining which patients may benefit from standard procedures and which patients may require additional resources to achieve improvements. This pilot research contributes to a deeper understanding of the factors related to childhood obesity and lays the groundwork for future AI-driven innovations in pediatric health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bravo-Saquicela, D.M.: Has the prevalence of childhood obesity in Spain plateaued? A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 19(9), 5240 (2022)

    Article  MATH  Google Scholar 

  2. Government of Spain. https://www.comisionadopobrezainfantil.gob.es/es/plan-estrategico-nacional-para-la-reduccion-de-la-obesidad-infantil. Accessed 6 Mar 2024

  3. Pelone, F., et al.: Economic impact of childhood obesity on health systems: a systematic review. Obes. Rev. 13(5), 431–440 (2012)

    Article  MATH  Google Scholar 

  4. Gupta, M., Phan, T.L.T., Bunnell, H.T., Beheshti, R.: Obesity prediction with EHR data: a deep learning approach with interpretable elements. ACM Trans. Comput. Healthc. (HEALTH) 3(3), 1–19 (2022)

    Article  Google Scholar 

  5. Gou, H., Song, H., Tian, Z., Liu, Y.: Prediction models for children/adolescents with obesity/overweight: a systematic review and meta-analysis. Prev. Med. 107823 (2023)

    Google Scholar 

  6. Butler, É.M., et al.: A prediction model for childhood obesity in New Zealand. Sci. Rep. 11(1), 6380 (2021)

    Article  MATH  Google Scholar 

  7. Yuanqing, F., et al.: Integration of an interpretable machine learning algorithm to identify early life risk factors of childhood obesity among preterm infants: a prospective birth cohort. BMC Med. 18(1), 1–10 (2020)

    MATH  Google Scholar 

  8. Kwan, J.L., et al.: Computerised clinical decision support systems and absolute improvements in care: meta-analysis of controlled clinical trials. Bmj 370 (2020)

    Google Scholar 

  9. Paassen, B., McBroom, J., Jeffries, B., Koprinska, I., Yacef, K., et al.: Mapping python programs to vectors using recursive neural encodings. J. Educ. Data Min. 13(3), 1–35 (2021)

    MATH  Google Scholar 

  10. Guidelines for the prevention of overweight and obesity in childhood and adolescence. https://www.unicef.org/media/96096/file/Overweight-Guidance-2020-ES.pdf. Accessed 6 Mar 2024

  11. Spanish Society of Pediatric Gastroenterology, Hepatology and Nutrition (2020). https://www.seghnp.org/. Accessed 6 Mar 2024

  12. Reinehr, T., Lass, N., Toschke, C., Rothermel, J., Lanzinger, S., Holl, R.W.: Which amount of BMI-SDS reduction is necessary to improve cardiovascular risk factors in overweight children? J. Clin. Endocrinol. Metab. 101(8), 3171–3179 (2016)

    Article  Google Scholar 

  13. Raschka, S., Patterson, J., Nolet, C.: Machine learning in python: main developments and technology trends in data science, machine learning, and artificial intelligence. Information 11(4), 193 (2020)

    Article  MATH  Google Scholar 

  14. Seger, C.: An investigation of categorical variable encoding techniques in machine learning: binary versus one-hot and feature hashing. (2018:596):34 (2018)

    Google Scholar 

  15. Sadaiyandi, J., Arumugam, P., Sangaiah, A.K., Zhang, C.: Stratified sampling-based deep learning approach to increase prediction accuracy of unbalanced dataset. Electronics 12, 4423 (2023)

    Article  MATH  Google Scholar 

  16. Hayaty, M., Muthmainah, S., Ghufran, S.M.: Random and synthetic over-sampling approach to resolve data imbalance in classification. Int. J. Artif. Intell. Res. 4(2), 86–94 (2020)

    Article  MATH  Google Scholar 

  17. Douzas, G., Bacao, F., Last, F.: Improving imbalanced learning through a heuristic oversampling method based on k-means and smote. Inf. Sci. 465, 1–20 (2018)

    Article  MATH  Google Scholar 

  18. Miller, M.E., Hui, S.L., Tierney, W.M.: Validation techniques for logistic regression models. Stat. Med. 10(8), 1213–1226 (1991)

    Article  MATH  Google Scholar 

  19. Song, Y.-Y., Ying, L.U.: Decision tree methods: applications for classification and prediction. Shanghai Arch. Psychiatry 27(2), 130 (2015)

    MATH  Google Scholar 

  20. Wang, W., Men, C., Weizhen, L.: Online prediction model based on support vector machine. Neurocomputing 71(4–6), 550–558 (2008)

    Article  MATH  Google Scholar 

  21. Kharya, S., Soni, S.: Weighted naive bayes classifier: a predictive model for breast cancer detection. Int. J. Comput. Appl. 133(9), 32–37 (2016)

    MATH  Google Scholar 

  22. Speiser, J.L., Miller, M.E., Tooze, J., Ip, E.: A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 134, 93–101 (2019)

    Article  Google Scholar 

  23. Bahad, P., Saxena, P.: Study of adaboost and gradient boosting algorithms for predictive analytics. In: International Conference on Intelligent Computing and Smart Communication 2019: Proceedings of ICSC 2019, pp. 235–244. Springer (2020)

    Google Scholar 

  24. Li, S., Zhang, X.: Research on orthopedic auxiliary classification and prediction model based on XGBoost algorithm. Neural Comput. Appl. 32, 1971–1979 (2020)

    Article  MATH  Google Scholar 

  25. Mullick, S.S., Datta, S., Dhekane, S.G., Das, S.: Appropriateness of performance indices for imbalanced data classification: an analysis. Pattern Recogn. 102, 107197 (2020)

    Article  MATH  Google Scholar 

  26. Luque, A., Carrasco, A., Martín, A., de Las Heras, A.: The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recogn. 91, 216–231 (2019)

    Article  MATH  Google Scholar 

  27. Xu, P., Ji, X., Li, M., et al.: Small data machine learning in materials science. npj Comput. Mater. 9, 42 (2023)

    Article  MATH  Google Scholar 

  28. Jain, D., Singh, V.: Feature selection and classification systems for chronic disease prediction: a review. Egypt. Inform. J. 19(3), 179–189 (2018)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Investigo Program of the Generalitat Valenciana (INVEST/2023/304) and the UNISALUT program of Fundaciö per al Foment de la Investigaciö Sanitária i Biomèdica de la Comunitat Valenciana (FISABIO) and Universitat Politècnica de València (POLISABIO22_AP06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Soriano-Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soriano-Gonzalez, R., Fuster, N., Perez-Bernabeu, E., Ros-Cervera, G. (2025). AI-Enhanced Decision-Making in Childhood Obesity Interventions. In: Juan, A.A., Faulin, J., Lopez-Lopez, D. (eds) Decision Sciences. DSA ISC 2024. Lecture Notes in Computer Science, vol 14778. Springer, Cham. https://doi.org/10.1007/978-3-031-78238-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78238-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78237-4

  • Online ISBN: 978-3-031-78238-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics