Abstract
This article presents theoretical and numerical insights from employing artificial intelligence algorithms to strategic marketing decisions, focusing specifically on the optimization of product portfolio allocation. Given its critical importance in revenue generation, customer satisfaction and market positioning, it is crucial that marketing directors make appropriate and data-driven decisions on the implications of different strategies regarding the allocation of inventory and advertising spending, among others. Through computational analysis, utilizing the Non-dominated Sorting Genetic Algorithm II, we explore how varying allocation strategies impact key performance metrics. Beyond merely providing optimal portfolio allocation, the algorithm allows for quantifying trade-offs among objectives, shedding light on their implications for competitive dynamics, revenue generation, and inventory costs. By solving multi-objective optimization problems inherent in product portfolio management, this article offers comprehensive insights into the role of AI-driven approaches in enhancing strategic decisions that shape competitiveness and customer value in today’s marketing landscape.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Arora, S., Sahney, S., Parida, R.R.: Drivers of showrooming behaviour: insights from integrated perspectives. Int. J. Retail Distrib. Manag. 50(3), 398–413 (2022)
Bella, K.M.J.: A study on marketing analytics and artificial intelligence XV Issue 55, 53–57 (2024)
Borges, A.F., Laurindo, F.J., Spínola, M.M., Gonçalves, R.F., Mattos, C.A.: The strategic use of artificial intelligence in the digital era: systematic literature review and future research directions. Int. J. Inf. Manag. 57, 102225 (2021)
Bullah, S., van Zyl, T.L.: A learnheuristic approach to a constrained multi-objective portfolio optimisation problem. arXiv preprint arXiv:2304.06675 (2023)
Cannavacciuolo, L., Iandoli, L., Ponsiglione, C., Zollo, G.: Knowledge elicitation and mapping in the design of a decision support system for the evaluation of suppliers’ competencies. Vine - J. Inf. Knowl. Manag. Syst. 45(4), 530–550 (2015)
Davenport, T., Guha, A., Grewal, D., Bressgott, T.: How artificial intelligence will change the future of marketing. J. Acad. Mark. Sci. 48, 24–42 (2020)
Demirkan, H., Delen, D.: Leveraging the capabilities of service-oriented decision support systems: putting analytics and big data in cloud. Decis. Support Syst. 55(1), 412–421 (2013)
He, Q., He, Z., Duan, S., Zhong, Y.: Multi-objective interval portfolio optimization modeling and solving for margin trading. Swarm Evol. Comput. 75, 101141 (2022)
Henderson, H.: Creating alternative futures. Media Resources Center, Iowa State University (1978)
Juan, A.A., Keenan, P., Martí, R., McGarraghy, S., Panadero, J., Carroll, P., Oliva, D.: A review of the role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics. Ann. Oper. Res. 320(2), 831–861 (2023)
Juan, A.A., Kelton, W.D., Currie, C.S., Faulin, J.: Simheuristics applications: dealing with uncertainty in logistics, transportation, and other supply chain areas. In: 2018 Winter Simulation Conference (WSC), pp. 3048–3059. IEEE (2018)
Kalayci, C.B., Polat, O., Akbay, M.A.: An efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimization. Swarm Evol. Comput. 54, 100662 (2020)
Khotinskaya, G., Chernikova, L., Likhacheva, O., Setchenkova, L., Slepneva, T.: Digital transformation as a driver for business ecosystem development. In: E3S Web of Conferences, vol. 403, p. 08017. EDP Sciences (2023)
Kolm, P.N., Tütüncü, R., Fabozzi, F.J.: 60 years of portfolio optimization: practical challenges and current trends. Eur. J. Oper. Res. 234(2), 356–371 (2014)
Kumar, D.T.S.: Data mining based marketing decision support system using hybrid machine learning algorithm. J. Artif. Intell. Capsule Netw. 2(3), 185–193 (2020)
Li, S.: The development of a hybrid intelligent system for developing marketing strategy. Decis. Support Syst. 27(4), 395–409 (2000)
Loke, Z.X., Goh, S.L., Kendall, G., Abdullah, S., Sabar, N.R.: Portfolio optimisation problem: a taxonomic review of solution methodologies. IEEE Access (2023)
Ma, J., Kim, H.M.: Continuous preference trend mining for optimal product design with multiple profit cycles. J. Mech. Des. 136(6), 061002 (2014)
Markowitz, H.M., Markowitz, H.M.: Portfolio Selection: Efficient Diversification of Investments. J. Wiley, Hoboken (1967)
Mehlstäubl, J., Braun, F., Denk, M., Kraul, R., Paetzold, K.: Using machine learning for product portfolio management: a methodical approach to predict values of product attributes for multi-variant product portfolios. Proc. Des. Soc. 2, 1659–1668 (2022)
Mehlstäubl, J., Braun, F., Paetzold, K.: Data mining in product portfolio and variety management–literature review on use cases and research potentials. In: 2021 IEEE Technology & Engineering Management Conference-Europe (TEMSCON-EUR), pp. 1–6. IEEE (2021)
Mustak, M., Salminen, J., Plé, L., Wirtz, J.: Artificial intelligence in marketing: topic modeling, scientometric analysis, and research agenda. J. Bus. Res. 124, 389–404 (2021)
Pai, G.V., Michel, T.: Metaheuristic multi-objective optimization of constrained futures portfolios for effective risk management. Swarm Evol. Comput. 19, 1–14 (2014)
Panadero, J., Juan, A.A., Freixes, A., Grifoll, M., Serrat, C., Dehghanimohamamdabadi, M.: An agile simheuristic for the stochastic team task assignment and orienteering problem: applications to unmanned aerial vehicles. In: 2020 Winter Simulation Conference (WSC), pp. 1324–1335. IEEE (2020)
Pouya, A.R., Solimanpur, M., Rezaee, M.J.: Solving multi-objective portfolio optimization problem using invasive weed optimization. Swarm Evol. Comput. 28, 42–57 (2016)
Qu, B., Zhou, Q., Xiao, J., Liang, J., Suganthan, P.N., et al.: Large-scale portfolio optimization using multiobjective evolutionary algorithms and preselection methods. Math. Probl. Eng. 2017 (2017)
Rana, J., Gaur, L., Singh, G., Awan, U., Rasheed, M.I.: Reinforcing customer journey through artificial intelligence: a review and research agenda. Int. J. Emerg. Mark. 17(7), 1738–1758 (2022)
Rodriguez-Garcia, P., Li, Y., Lopez-Lopez, D., Juan, A.A.: Strategic decision making in smart home ecosystems: a review on the use of artificial intelligence and internet of things. Internet Things 100772 (2023)
Schmidt, C.P., Gould, F.J., Schmidt, C.: Study Guide [to] Introductory Management Science, Gary. D. Eppen, Floyd J. Gould, Charles P. Schmidt. Prentice Hall, Hoboken (1991)
Schrage, M., Kiron, D.: Improving strategic execution with machine learning. MIT Sloan Management Review (2018). pp. 0_1–7
Schrage, M., Kiron, D.: Understanding the real keys to effective kpi’s. MIT initiative on the digital economy research biref, pp. 1–3 (2018)
Shahid, M.Z., Li, G.: Impacto of artificial intelligence in marketing: a perspective of marketing professionals in Pakistan. Glob. J. Manag. Bus. Res. 19(2), 27–33 (2019)
Tang, J., Liu, G., Pan, Q.: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE/CAA J. Autom. Sin. 8(10), 1627–1643 (2021)
Tucker, C.S., Kim, H.M.: Data-driven decision tree classification for product portfolio design optimization, p. 041004 (2009)
Ünal, H.T., Başçiftçi, F.: Using evolutionary algorithms for the scheduling of aircrew on airborne early warning and control system. Defence Sci. J. 70(3) (2020)
Verma, S., Sharma, R., Deb, S., Maitra, D.: Artificial intelligence in marketing: systematic review and future research direction. Int. J. Inf. Manag. Data Insights 1(1), 100002 (2021)
Vlačić, B., Corbo, L., e Silva, S.C., Dabić, M.: The evolving role of artificial intelligence in marketing: a review and research agenda. J. Bus. Res. 128, 187–203 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rodriguez-Garcia, P., Lopez-Lopez, D., Martin Solano, J.A. (2025). Artificial Intelligence in Marketing Strategic Decisions via Product Portfolio Optimization. In: Juan, A.A., Faulin, J., Lopez-Lopez, D. (eds) Decision Sciences. DSA ISC 2024. Lecture Notes in Computer Science, vol 14778. Springer, Cham. https://doi.org/10.1007/978-3-031-78238-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-78238-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78237-4
Online ISBN: 978-3-031-78238-1
eBook Packages: Computer ScienceComputer Science (R0)