Skip to main content

Foundation Models for Slide-Level Cancer Subtyping in Digital Pathology

  • Conference paper
  • First Online:
Decision Sciences (DSA ISC 2024)

Abstract

Since the emergence of the ImageNet dataset, the pretraining and fine-tuning approach has become widely adopted in computer vision due to the ability of ImageNet-pretrained models to learn a wide variety of visual features. However, a significant challenge arises when adapting these models to domain-specific fields, such as digital pathology, due to substantial gaps between domains. To address this limitation, foundation models (FM) have been trained on large-scale in-domain datasets to learn the intricate features of histopathology images. In cancer diagnosis, whole-slide image (WSI) prediction is essential for patient prognosis, and multiple instance learning (MIL) has been implemented to handle the giga-pixel size of WSI. As MIL frameworks rely on patch-level feature aggregation, this work aims to compare the performance of various feature extractors developed under different pretraining strategies for cancer subtyping on WSI under a MIL framework. Results demonstrate the ability of foundation models to surpass ImageNet-pretrained models for the prediction of six skin cancer subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abels, E., et al.: Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the digital pathology association. J. Pathol. 249(3), 286–294 (2019). https://doi.org/10.1002/path.5331

    Article  MATH  Google Scholar 

  2. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019). https://doi.org/10.1038/s41591-019-0508-1

  3. Chen, R.J., et al.: Towards a general-purpose foundation model for computational pathology. Nat. Med. 30(3), 850–862 (2024). https://doi.org/10.1038/s41591-024-02857-3

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 1597–1607. PMLR, 13–18 July 2020. https://proceedings.mlr.press/v119/chen20j.html

  5. del Amor, R., et al.: An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images. Artif. Intell. Med. 121, 102197 (2021). https://doi.org/10.1016/j.artmed.2021.102197

    Article  Google Scholar 

  6. Del Amor, R., et al.: Constrained multiple instance learning for ulcerative colitis prediction using histological images. Comput. Methods Programs Biomed. 224, 107012 (2022). https://doi.org/10.1016/j.cmpb.2022.107012

  7. del Amor, R., Pérez-Cano, J., López-Pérez, M., Terradez, L., Aneiros-Fernandez, J., Morales, S., Mateos, J., Molina, R., Naranjo, V.: Annotation protocol and crowdsourcing multiple instance learning classification of skin histological images: The cr-ai4skin dataset. Artif. Intell. Med. 145, 102686 (2023). https://doi.org/10.1016/j.artmed.2023.102686

    Article  Google Scholar 

  8. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69(3), 1173–1185 (2022). https://doi.org/10.1109/TBME.2021.3117407

    Article  MATH  Google Scholar 

  9. Huang, Z., Bianchi, F., Yuksekgonul, M., Montine, T.J., Zou, J.: A visual-language foundation model for pathology image analysis using medical twitter. Nat. Med. 29(9), 2307–2316 (2023). https://doi.org/10.1038/s41591-023-02504-3

  10. Ikezogwo, W., et al.: Quilt-1m: One million image-text pairs for histopathology. In: Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. (eds.) Advances in Neural Information Processing Systems, vol. 36, pp. 37995–38017. Curran Associates, Inc. (2023). https://proceedings.neurips.cc/paper_files/paper/2023/file/775ec578876fa6812c062644964b9870-Paper-Datasets_and_Benchmarks.pdf

  11. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 2127–2136. PMLR, 10–15 July 2018. https://proceedings.mlr.press/v80/ilse18a.html

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

  13. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14318–14328, June 2021

    Google Scholar 

  14. Liu, M., Liu, Y., Cui, H., Li, C., Ma, J.: Mgct: Mutual-guided cross-modality transformer for survival outcome prediction using integrative histopathology-genomic features. In: 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1306–1312 (2023). https://doi.org/10.1109/BIBM58861.2023.10385897

  15. Lu, M.Y., et al.: A visual-language foundation model for computational pathology. Nat. Med. 30(3), 863–874 (2024). https://doi.org/10.1038/s41591-024-02856-4

    Article  MATH  Google Scholar 

  16. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(86), 2579–2605 (2008). http://jmlr.org/papers/v9/vandermaaten08a.html

  17. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 139, pp. 8748–8763. PMLR, 18–24 July 2021. https://proceedings.mlr.press/v139/radford21a.html

  18. Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X., zhang, y.: Transmil: transformer based correlated multiple instance learning for whole slide image classification. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 2136–2147. Curran Associates, Inc. (2021). https://proceedings.neurips.cc/paper_files/paper/2021/file/10c272d06794d3e5785d5e7c5356e9ff-Paper.pdf

  19. Wang, X., Yang, S., Zhang, J., Wang, M., Zhang, J., Yang, W., Huang, J., Han, X.: Transformer-based unsupervised contrastive learning for histopathological image classification. Med. Image Anal. 81, 102559 (2022). https://doi.org/10.1016/j.media.2022.102559

    Article  MATH  Google Scholar 

  20. Winnepenninckx, V., De Vos, R., Stas, M., van den Oord, J.J.: New phenotypical and ultrastructural findings in spindle cell (desmoplastic/neurotropic) melanoma. Appl. Immunohistochem. Mol. Morphol. 11(4), 369–375 (2003). https://doi.org/10.1097/01.PAI.0000040947.01212.40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Meseguer .

Editor information

Editors and Affiliations

Ethics declarations

Funding

This work has received funding from the Spanish Ministry of Economy and Competitiveness through projects PID2019-105142RB-C21 (AI4SKIN) and PID2022-140189OB-C21 (ASSIST). The work of Rocío del Amor and Pablo Meseguer has been supported by the Spanish Ministry of Universities under an FPU Grant (FPU20/05263) and valgrAI - Valencian Graduate School and Research Network of Artificial Intelligence, respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meseguer, P., del Amor, R., Colomer, A., Naranjo, V. (2025). Foundation Models for Slide-Level Cancer Subtyping in Digital Pathology. In: Juan, A.A., Faulin, J., Lopez-Lopez, D. (eds) Decision Sciences. DSA ISC 2024. Lecture Notes in Computer Science, vol 14779. Springer, Cham. https://doi.org/10.1007/978-3-031-78241-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78241-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78240-4

  • Online ISBN: 978-3-031-78241-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics