Skip to main content

Unsupervised Prediction of Blastocyst Development from Oocyte Images

  • Conference paper
  • First Online:
Decision Sciences (DSA ISC 2024)

Abstract

Unsupervised algorithms are valuable in medicine for discovering hidden patterns without relying on predefined labels. In this work, we conduct an experimental study to test different models on a novel dataset for classifying oocytes as viable or non-viable. The effectiveness of the models is evaluated by measuring the Area Under the Curve (AUC), which is comparable to supervised works. In addition to this, heatmaps have been extracted to provide explainability to the models, so a qualitative analysis has been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, A., Henkel, R., Huang, C.C., Lee, M.S.: Automation of human semen analysis using a novel artificial intelligence optical microscopic technology. Andrologia 51(11), e13440 (2019)

    Article  Google Scholar 

  2. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: semi-supervised anomaly detection via adversarial training. In: Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018, Revised Selected Papers, Part III 14, pp. 622–637. Springer (2019)

    Google Scholar 

  3. Bao, J., Sun, H., Deng, H., He, Y., Zhang, Z., Li, X.: Bmad: benchmarks for medical anomaly detection. arXiv preprint arXiv:2306.11876 (2023)

  4. Basile, T.M., Caponetti, L., Castellano, G., Sforza, G.: A texture-based image processing approach for the description of human oocyte cytoplasm. IEEE Trans. Instrum. Meas. 59(10), 2591–2601 (2010)

    Article  MATH  Google Scholar 

  5. Bercea, C.I., Rueckert, D., Schnabel, J.A.: What do AES learn? challenging common assumptions in unsupervised anomaly detection. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 304–314. Springer (2023)

    Google Scholar 

  6. Bormann, C.L., et al.: Consistency and objectivity of automated embryo assessments using deep neural networks. Fertil. Steril. 113(4), 781–787 (2020)

    Article  MATH  Google Scholar 

  7. Cao, Y., Wan, Q., Shen, W., Gao, L.: Informative knowledge distillation for image anomaly segmentation. Knowl.-Based Syst. 248, 108846 (2022)

    Article  MATH  Google Scholar 

  8. Coticchio, G., et al.: Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum. Reprod. Update 21(4), 427–454 (2015). https://doi.org/10.1093/humupd/dmv011

  9. Fernandez, E.I., et al.: Artificial intelligence in the ivf laboratory: overview through the application of different types of algorithms for the classification of reproductive data. J. Assist. Reprod. Genet. 37, 2359–2376 (2020)

    Article  MATH  Google Scholar 

  10. Firuzinia, S., Afzali, S.M., Ghasemian, F., Mirroshandel, S.A.: A robust deep learning-based multiclass segmentation method for analyzing human metaphase ii oocyte images. Comput. Methods Programs Biomed. 201, 105946 (2021)

    Article  Google Scholar 

  11. Firuzinia, S., Mirroshandel, S.A., Ghasemian, F., Afzali, S.M.: An automatic method for morphological abnormality detection in metaphase ii human oocyte images. In: 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 91–97. IEEE (2019)

    Google Scholar 

  12. Fjeldstad, J., et al.: An artificial intelligence tool predicts blastocyst development from static images of fresh mature oocytes. Reproductive BioMedicine, p. 103842 (2024)

    Google Scholar 

  13. Gardner, D.K., Lane, M., Stevens, J., Schlenker, T., Schoolcraft, W.B.: Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil. Steril. 73(6), 1155–1158 (2000)

    Article  Google Scholar 

  14. Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-ad: real-time unsupervised anomaly detection with localization via conditional normalizing flows. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 98–107 (2022)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLO, January 2023. https://github.com/ultralytics/ultralytics

  17. Kazerouni, A., et al.: Diffusion models in medical imaging: a comprehensive survey. Med. Image Anal. 102846 (2023)

    Google Scholar 

  18. Khosravi, P., et al.: Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit. Med. 2(1), 21 (2019)

    Article  MATH  Google Scholar 

  19. Kragh, M.F., Rimestad, J., Berntsen, J., Karstoft, H.: Automatic grading of human blastocysts from time-lapse imaging. Comput. Biol. Med. 115, 103494 (2019)

    Article  Google Scholar 

  20. Lalinia, M., Sahafi, A.: Colorectal polyp detection in colonoscopy images using yolo-v8 network, pp. 1–12. Signal, Image and Video Processing (2023)

    Google Scholar 

  21. Letterie, G., Mac Donald, A.: Artificial intelligence in in vitro fertilization: a computer decision support system for day-to-day management of ovarian stimulation during in vitro fertilization. Fertil. Steril. 114(5), 1026–1031 (2020)

    Article  Google Scholar 

  22. Manna, C., Nanni, L., Lumini, A., Pappalardo, S.: Artificial intelligence techniques for embryo and oocyte classification. Reprod. Biomed. Online 26(1), 42–49 (2013)

    Article  MATH  Google Scholar 

  23. McCallum, C., et al.: Deep learning-based selection of human sperm with high DNA integrity. Commun. Biol. 2(1), 250 (2019)

    Article  MATH  Google Scholar 

  24. Qureshi, R., Ragab, M.G., Abdulkader, S.J., Alqushaib, A., Sumiea, E.H., Alhussian, H., et al.: A comprehensive systematic review of yolo for medical object detection (2018 to 2023). Authorea Preprints (2023)

    Google Scholar 

  25. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  26. Siristatidis, C., Vogiatzi, P., Pouliakis, A., Trivella, M., Papantoniou, N., Bettocchi, S.: Predicting ivf outcome: a proposed web-based system using artificial intelligence. In vivo 30(4), 507–512 (2016)

    Google Scholar 

  27. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  28. Targosz, A., Przystałka, P., Wiaderkiewicz, R., Mrugacz, G.: Semantic segmentation of human oocyte images using deep neural networks. Biomed. Eng. Online 20(1), 40 (2021)

    Article  Google Scholar 

  29. Tian, Y., et al.: Unsupervised anomaly detection in medical images with a memory-augmented multi-level cross-attentional masked autoencoder. In: International Workshop on Machine Learning in Medical Imaging, pp. 11–21. Springer (2023)

    Google Scholar 

  30. Vyas, B., Rajendran, R.M.: Generative adversarial networks for anomaly detection in medical images. International Journal of Multidisciplinary Innovation and Research Methodology, ISSN: 2960-2068 2(4), 52–58 (2023)

    Google Scholar 

  31. Yamada, S., Hotta, K.: Reconstruction student with attention for student-teacher pyramid matching. arXiv preprint arXiv:2111.15376 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Pérez García-de-la-Puente .

Editor information

Editors and Affiliations

Ethics declarations

Funding

This study has been partially funded by Agencia Valenciana de la Innovacion (AVI) (INNCAD/2023/124). The work of N. P. García de la Puente was supported by the grant PID2022-140189OB-C21 funded by MICIU/AEI/10.13039/501100011033 ERDF/UE and FSE+. This research was funded an FPU20/03621 (to L.M.) pre-doctoral programme fellowship from the Ministry of Science, Innovation and Universities, Government of Spain. The work by M. López-Pérez was supported by the grant JDC2022-048318-I funded by MICIU/AEI/10.13039/501100011033 the European Union “NextGenerationEU”/PRTR.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-de-la-Puente, N.P., Paya, E., Murria, L., López-Pérez, M., Meseguer, M., Naranjo, V. (2025). Unsupervised Prediction of Blastocyst Development from Oocyte Images. In: Juan, A.A., Faulin, J., Lopez-Lopez, D. (eds) Decision Sciences. DSA ISC 2024. Lecture Notes in Computer Science, vol 14779. Springer, Cham. https://doi.org/10.1007/978-3-031-78241-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78241-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78240-4

  • Online ISBN: 978-3-031-78241-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics