Skip to main content

Transformer-Based Fringe Restoration for Shadow Mitigation in Fringe Projection Profilometry

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Abstract

Fringe Projection Profilometry (FPP) is a widely recognized technique for deriving 3D profiles from images. Despite numerous methodologies developed to determine depth in FPP, the inherent triangulation setup of camera, projector, and object often introduces substantial shadows in captured fringes, especially for complex objects. These shadows can impede algorithm performance and introduce undesirable artifacts in final depth profiles. In this work, we introduce a Transformer-based Fringe Restoration network designed to repair shadowed regions in single deformed fringe images. The network comprises an object localization module to identify object regions and a shadow repair module that utilizes reference and deformed fringes to restore shadowed areas. In addition, we construct a comprehensive pseudo-realistic dataset using Blender, a computer graphics tool, to train the proposed network. Our results demonstrate precise object region segmentation with just a single fringe image, and the proposed network achieves superior fringe restoration, as quantified by Intersection over Union (IoU) and dice score metrics. Moreover, 3D reconstruction on shadowed and shadow-free deformed fringes using standard single-shot methods exhibits enhanced performance owing to the fringe restoration network.

S. Parlapalli and S. Ranjan—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gorthi, S.S., Rastogi, P.: Fringe projection techniques: whither we are? Opt. Lasers Eng. 48(2), 133–140 (2010)

    Article  Google Scholar 

  2. Skydan, O.A., Lalor, M.J., Burton, D.R.: Using coloured structured light in 3-d surface measurement. Opt. Lasers Eng. 43(7), 801–814 (2005)

    Article  Google Scholar 

  3. T. Tao, Q. Chen, J. Da, S. Feng, Y. Hu, and C. Zuo, “Real-time 3-d shape measurement with composite phase-shifting fringes and multi-view system,” Optics express, vol. 24, no. 18, pp. 20 253–20 269, 2016

    Google Scholar 

  4. Servin, M., Padilla, M., Garnica, G., Gonzalez, A.: Profilometry of three-dimensional discontinuous solids by combining two-steps temporal phase unwrapping, co-phased profilometry and phase-shifting interferometry. Opt. Lasers Eng. 87, 75–82 (2016)

    Article  Google Scholar 

  5. V. Ramesh et al., “A class of photometric invariants: Separating material from shape and illumination,” in Proceedings Ninth IEEE International Conference on Computer Vision. IEEE, 2003, pp. 1387–1394

    Google Scholar 

  6. S. Zhang, “Phase unwrapping error reduction framework for a multiple-wavelength phase-shifting algorithm,” Optical Engineering, vol. 48, no. 10, pp. 105 601–105 601, 2009

    Google Scholar 

  7. F. Chen, X. Su, and L. Xiang, “Analysis and identification of phase error in phase measuring profilometry,” Optics express, vol. 18, no. 11, pp. 11 300–11 307, 2010

    Google Scholar 

  8. Huang, L., Asundi, A.K.: Phase invalidity identification framework with the temporal phase unwrapping method. Meas. Sci. Technol. 22(3), 035304 (2011)

    Article  Google Scholar 

  9. Lu, L., Xi, J., Yu, Y., Guo, Q., Yin, Y., Song, L.: Shadow removal method for phase-shifting profilometry. Appl. Opt. 54(19), 6059–6064 (2015)

    Article  Google Scholar 

  10. Zhang, S.: Composite phase-shifting algorithm for absolute phase measurement. Opt. Lasers Eng. 50(11), 1538–1541 (2012)

    Article  Google Scholar 

  11. Zhong, K., Li, Z., Shi, Y., Wang, C., Lei, Y.: Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping. Opt. Lasers Eng. 51(11), 1213–1222 (2013)

    Article  Google Scholar 

  12. Xiao, Y., Li, Y.-F.: Improved 3d measurement with a novel preprocessing method in dfp. Robotics and Biomimetics 4, 1–11 (2017)

    Article  MathSciNet  Google Scholar 

  13. Wang, H., Kemao, Q., Soon, S.H.: Valid point detection in fringe projection profilometry. Opt. Express 23(6), 7535–7549 (2015)

    Article  Google Scholar 

  14. Zheng, D., Da, F., Kemao, Q., Seah, H.S.: Phase error analysis and compensation for phase shifting profilometry with projector defocusing. Appl. Opt. 55(21), 5721–5728 (2016)

    Article  Google Scholar 

  15. C.-V. López-Torres, S. Salazar Colores, K. Kells, J.-C. Pedraza-Ortega, and J.-M. Ramos-Arreguin, “Improving 3d reconstruction accuracy in wavelet transform profilometry by reducing shadow effects,” IET Image Processing, vol. 14, no. 2, pp. 310–317, 2020

    Google Scholar 

  16. Hosseinzadeh, S., Shakeri, M., Zhang, H.: “Fast shadow detection from a single image using a patched convolutional neural network,”in. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2018, 3124–3129 (2018)

    Google Scholar 

  17. B. Ding, C. Long, L. Zhang, and C. Xiao, “Argan: Attentive recurrent generative adversarial network for shadow detection and removal,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 10 213–10 222

    Google Scholar 

  18. Wang, C., Pang, Q.: The elimination of errors caused by shadow in fringe projection profilometry based on deep learning. Opt. Lasers Eng. 159, 107203 (2022)

    Article  Google Scholar 

  19. Mantravadi, M., Malacara, D.: Newton, fizeau, and haidinger interferometers. Optical shop testing 59, 1–45 (1992)

    Google Scholar 

  20. Zuo, C., Huang, L., Zhang, M., Chen, Q., Asundi, A.: Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review. Opt. Lasers Eng. 85, 84–103 (2016)

    Article  Google Scholar 

  21. Takeda, M., Mutoh, K.: Fourier transform profilometry for the automatic measurement of 3-d object shapes. Appl. Opt. 22(24), 3977–3982 (1983)

    Article  Google Scholar 

  22. Feng, S., Zuo, C., Zhang, L., Tao, T., Hu, Y., Yin, W., Qian, J., Chen, Q.: Calibration of fringe projection profilometry: A comparative review. Opt. Lasers Eng. 143, 106622 (2021)

    Article  Google Scholar 

  23. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 10 012–10 022

    Google Scholar 

  24. Ravi, V., Gorthi, R.K.: Litef2dnet: a lightweight learning framework for 3d reconstruction using fringe projection profilometry. Appl. Opt. 62(12), 3215–3224 (2023)

    Article  Google Scholar 

  25. Sumanth, K., Ravi, V., Gorthi, R.K.: A multi-task learning for 2d phase unwrapping in fringe projection. IEEE Signal Process. Lett. 29, 797–801 (2022)

    Article  Google Scholar 

  26. Ravi, V., Gorthi, R.K.: Cf3dnet: A learning-based approach for single-shot 3d reconstruction from circular fringes. Opt. Lasers Eng. 167, 107597 (2023)

    Article  Google Scholar 

  27. Y. Zheng, S. Wang, Q. Li, and B. Li, “Fringe projection profilometry by conducting deep learning from its digital twin,” Optics express, vol. 28, no. 24, pp. 36 568–36 583, 2020

    Google Scholar 

  28. Kemao, Q.: Windowed fourier transform for fringe pattern analysis. Appl. Opt. 43(13), 2695–2702 (2004)

    Article  Google Scholar 

  29. Zhao, M., Huang, L., Zhang, Q., Su, X., Asundi, A., Kemao, Q.: Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies. Appl. Opt. 50(33), 6214–6224 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaishnavi Ravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ravi, V., Parlapalli, S., Ranjan, S., Gorthi, R.K. (2025). Transformer-Based Fringe Restoration for Shadow Mitigation in Fringe Projection Profilometry. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15321. Springer, Cham. https://doi.org/10.1007/978-3-031-78305-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78305-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78304-3

  • Online ISBN: 978-3-031-78305-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics