Abstract
Colorization of images serves as a transformative tool, imbuing black and white pictures with vitality that mirrors the essence of the captured moment. Beyond merely transitioning aged images into modern color renditions, this process extends its reach to inferring colors for images where conventional color-capturing methods fail. In this paper, we introduce a novel algorithm designed to seamlessly convert grayscale images into perceptually consistent color compositions. We have also developed a novel layer by combining convolutional and lambda layers towards image colorization. Our proposed algorithm represents a significant advancement in the field of image colorization, offering a multifaceted solution to enhance visual storytelling and comprehension.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antic., J.: A deep learning based project for colorizing and restoring old images (and video!). https://github.com/jantic/deoldify, (2019)
Anwar, S., Tahir, M., Li, C., Mian, A., Khan, F.S., Muzaffar, A.W.: Image colorization: A survey and dataset. arXiv preprint arXiv:2008.10774 (2020)
Bahng, H., Yoo, S., Cho, W., Park, D.K., Wu, Z., Ma, X., Choo, J.: Coloring with words: Guiding image colorization through text-based palette generation. In: ECCV (2018)
Bastos, R., Wynn, W.C., Lastra, A.: Run-time glossy surface self-transfer processing (2013)
Bello, I.: Lambdanetworks: Modeling long-range interactions without attention. In: International Conference on Learning Representations (2021), https://openreview.net/forum?id=xTJEN-ggl1b
Caesar, H., Uijlings, J.R.R., Ferrari, V.: Coco-stuff: Thing and stuff classes in context. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 1209–1218 (2018)
Carlucci, F.M., Russo, P., Caputo, B.: \((de)^2co\): Deep depth colorization. IEEE Robotics and Automation Letters (2018)
Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. 2015 IEEE International Conference on Computer Vision (ICCV) pp. 415–423 (2015)
Hanyuan Liu and Jinbo Xing and Minshan Xie and Chengze Li and Tien-Tsin Wong: Improved Diffusion-based Image Colorization via Piggybacked Models. ArXiv abs/2304.11105 (2023)
Subhankar Ghosh and Prasun Roy and Saumik Bhattacharya and Umapada Pal and Michael Blumenstein: TIC: text-guided image colorization using conditional generative model. Multimedia Tools and Applications (2023)
Güçlütürk, Y., Güçlü, U., van Lier, R., van Gerven, M.: Convolutional sketch inversion. In: ECCV Workshops (2016)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Neural Information Processing Systems (2017), https://api.semanticscholar.org/CorpusID:326772
Huang, Y.C., Tung, Y.S., Chen, J.C., Wang, S.W., Wu, J.L.: An adaptive edge detection based colorization algorithm and its applications. In: MULTIMEDIA ’05 (2005)
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5mb model size. arXiv preprint arXiv:1602.07360 (2016)
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color! ACM Transactions on Graphics (TOG) 35, 1–11 (2016)
Ji, X., Jiang, B., Luo, D., Tao, G., Chu, W., Xie, Z., Wang, C., Tai, Y.: Colorformer: Image colorization via color memory assisted hybrid-attention transformer. In: European Conference on Computer Vision (2022), https://api.semanticscholar.org/CorpusID:253120584
Kang, X., Yang, T., Ouyang, W., Ren, P., Li, L., Xie, X.: Ddcolor: Towards photo-realistic image colorization via dual decoders (2022), https://api.semanticscholar.org/CorpusID:254974200
Kim, G.Y., Kang, K., Kim, S.H., Lee, H., Kim, S., Kim, J., Baek, S.H., Cho, S.: Bigcolor: Colorization using a generative color prior for natural images. In: European Conference on Computer Vision (2022), https://api.semanticscholar.org/CorpusID:250699343
Kumar, M., Weissenborn, D., Kalchbrenner, N.: Colorization transformer. ArXiv abs/2102.04432 (2021)
Larsson, G., Maire, M., Shakhnarovich, G.: Colorization as a proxy task for visual understanding. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 840–849 (2017)
Lei, C., Chen, Q.: Fully automatic video colorization with self-regularization and diversity. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 3748–3756 (2019)
Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: SIGGRAPH 2004 (2004)
Noda, H., Niimi, M.: Colorization in ycbcr color space and its application to jpeg images. Pattern Recognit. 40, 3714–3720 (2007)
Perazzi, F., Pont-Tuset, J., McWilliams, B., Gool, L.V., Gross, M.H., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 724–732 (2016)
Su, J.W., kuo Chu, H., Huang, J.B.: Instance-aware image colorization. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 7965–7974 (2020)
Tola, E., Lepetit, V., Fua, P.V.: A fast local descriptor for dense matching. 2008 IEEE Conference on Computer Vision and Pattern Recognition pp. 1–8 (2008)
Wang, P., Patel, V.M.: Generating high quality visible images from sar images using cnns. 2018 IEEE Radar Conference (RadarConf18) pp. 0570–0575 (2018)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing (TIP) (2004)
Weng, S., Sun, J., Li, Y., Li, S., Shi, B.: Ct2: Colorization transformer via color tokens. In: European Conference on Computer Vision (2022), https://api.semanticscholar.org/CorpusID:253512662
Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: ECCV (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ghosh, S., Bhattacharya, S., Roy, P., Pal, U., Blumenstein, M. (2025). \(\lambda \)-Color: Amplifying Long-Range Dependencies for Image Colorization. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15322. Springer, Cham. https://doi.org/10.1007/978-3-031-78312-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-78312-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78311-1
Online ISBN: 978-3-031-78312-8
eBook Packages: Computer ScienceComputer Science (R0)