Skip to main content

\(\lambda \)-Color: Amplifying Long-Range Dependencies for Image Colorization

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15322))

Included in the following conference series:

  • 204 Accesses

Abstract

Colorization of images serves as a transformative tool, imbuing black and white pictures with vitality that mirrors the essence of the captured moment. Beyond merely transitioning aged images into modern color renditions, this process extends its reach to inferring colors for images where conventional color-capturing methods fail. In this paper, we introduce a novel algorithm designed to seamlessly convert grayscale images into perceptually consistent color compositions. We have also developed a novel layer by combining convolutional and lambda layers towards image colorization. Our proposed algorithm represents a significant advancement in the field of image colorization, offering a multifaceted solution to enhance visual storytelling and comprehension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antic., J.: A deep learning based project for colorizing and restoring old images (and video!). https://github.com/jantic/deoldify, (2019)

  2. Anwar, S., Tahir, M., Li, C., Mian, A., Khan, F.S., Muzaffar, A.W.: Image colorization: A survey and dataset. arXiv preprint arXiv:2008.10774 (2020)

  3. Bahng, H., Yoo, S., Cho, W., Park, D.K., Wu, Z., Ma, X., Choo, J.: Coloring with words: Guiding image colorization through text-based palette generation. In: ECCV (2018)

    Google Scholar 

  4. Bastos, R., Wynn, W.C., Lastra, A.: Run-time glossy surface self-transfer processing (2013)

    Google Scholar 

  5. Bello, I.: Lambdanetworks: Modeling long-range interactions without attention. In: International Conference on Learning Representations (2021), https://openreview.net/forum?id=xTJEN-ggl1b

  6. Caesar, H., Uijlings, J.R.R., Ferrari, V.: Coco-stuff: Thing and stuff classes in context. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 1209–1218 (2018)

    Google Scholar 

  7. Carlucci, F.M., Russo, P., Caputo, B.: \((de)^2co\): Deep depth colorization. IEEE Robotics and Automation Letters (2018)

    Google Scholar 

  8. Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. 2015 IEEE International Conference on Computer Vision (ICCV) pp. 415–423 (2015)

    Google Scholar 

  9. Hanyuan Liu and Jinbo Xing and Minshan Xie and Chengze Li and Tien-Tsin Wong: Improved Diffusion-based Image Colorization via Piggybacked Models. ArXiv abs/2304.11105 (2023)

    Google Scholar 

  10. Subhankar Ghosh and Prasun Roy and Saumik Bhattacharya and Umapada Pal and Michael Blumenstein: TIC: text-guided image colorization using conditional generative model. Multimedia Tools and Applications (2023)

    Google Scholar 

  11. Güçlütürk, Y., Güçlü, U., van Lier, R., van Gerven, M.: Convolutional sketch inversion. In: ECCV Workshops (2016)

    Google Scholar 

  12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Neural Information Processing Systems (2017), https://api.semanticscholar.org/CorpusID:326772

  13. Huang, Y.C., Tung, Y.S., Chen, J.C., Wang, S.W., Wu, J.L.: An adaptive edge detection based colorization algorithm and its applications. In: MULTIMEDIA ’05 (2005)

    Google Scholar 

  14. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5mb model size. arXiv preprint arXiv:1602.07360 (2016)

  15. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color! ACM Transactions on Graphics (TOG) 35, 1–11 (2016)

    Article  Google Scholar 

  16. Ji, X., Jiang, B., Luo, D., Tao, G., Chu, W., Xie, Z., Wang, C., Tai, Y.: Colorformer: Image colorization via color memory assisted hybrid-attention transformer. In: European Conference on Computer Vision (2022), https://api.semanticscholar.org/CorpusID:253120584

  17. Kang, X., Yang, T., Ouyang, W., Ren, P., Li, L., Xie, X.: Ddcolor: Towards photo-realistic image colorization via dual decoders (2022), https://api.semanticscholar.org/CorpusID:254974200

  18. Kim, G.Y., Kang, K., Kim, S.H., Lee, H., Kim, S., Kim, J., Baek, S.H., Cho, S.: Bigcolor: Colorization using a generative color prior for natural images. In: European Conference on Computer Vision (2022), https://api.semanticscholar.org/CorpusID:250699343

  19. Kumar, M., Weissenborn, D., Kalchbrenner, N.: Colorization transformer. ArXiv abs/2102.04432 (2021)

    Google Scholar 

  20. Larsson, G., Maire, M., Shakhnarovich, G.: Colorization as a proxy task for visual understanding. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 840–849 (2017)

    Google Scholar 

  21. Lei, C., Chen, Q.: Fully automatic video colorization with self-regularization and diversity. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 3748–3756 (2019)

    Google Scholar 

  22. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: SIGGRAPH 2004 (2004)

    Google Scholar 

  23. Noda, H., Niimi, M.: Colorization in ycbcr color space and its application to jpeg images. Pattern Recognit. 40, 3714–3720 (2007)

    Article  Google Scholar 

  24. Perazzi, F., Pont-Tuset, J., McWilliams, B., Gool, L.V., Gross, M.H., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 724–732 (2016)

    Google Scholar 

  25. Su, J.W., kuo Chu, H., Huang, J.B.: Instance-aware image colorization. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 7965–7974 (2020)

    Google Scholar 

  26. Tola, E., Lepetit, V., Fua, P.V.: A fast local descriptor for dense matching. 2008 IEEE Conference on Computer Vision and Pattern Recognition pp. 1–8 (2008)

    Google Scholar 

  27. Wang, P., Patel, V.M.: Generating high quality visible images from sar images using cnns. 2018 IEEE Radar Conference (RadarConf18) pp. 0570–0575 (2018)

    Google Scholar 

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing (TIP) (2004)

    Google Scholar 

  29. Weng, S., Sun, J., Li, Y., Li, S., Shi, B.: Ct2: Colorization transformer via color tokens. In: European Conference on Computer Vision (2022), https://api.semanticscholar.org/CorpusID:253512662

  30. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: ECCV (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhankar Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosh, S., Bhattacharya, S., Roy, P., Pal, U., Blumenstein, M. (2025). \(\lambda \)-Color: Amplifying Long-Range Dependencies for Image Colorization. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15322. Springer, Cham. https://doi.org/10.1007/978-3-031-78312-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78312-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78311-1

  • Online ISBN: 978-3-031-78312-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics