Skip to main content

Adaptive Data Association for Enhanced Multi-object Tracking and Segmentation with Pre-matching and Selective Association

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15322))

Included in the following conference series:

  • 157 Accesses

Abstract

Multi-Object Tracking and Segmentation (MOTS) is a critical task in autonomous driving, robotic perception, and video analysis. The challenge lies in accurately identifying and associating objects within video sequences, especially when the number of objects is uncertain, motion patterns vary, and frequent object overlaps occur. In this paper, we propose a method with pre-matching and selective association (PS-Track) to adaptively combine motion and appearance cues to cope with continuously changing scenes. Unlike solely relying on the single cue or predetermined combination schemes, our method facilitates data association by discerning similarities in appearance among tracks across different scenarios through the dynamic selection of suitable schemes. Through experimentation, we also found that our method exhibits advantages in tracking efficiency compared to complex models. Our method achieved outstanding results on the MOTS dataset, with scores of 61.0 for sMOTA, 56.4 for IDF1, 76.0 for MOTSA, and 76.5 for FPS.

L. Chen and G. Liao—Co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharon, N., Orfaig, R., Bobrovsky, B.Z.: Bot-sort: Robust associations multi-pedestrian tracking. arXiv preprint arXiv:2206.14651 (2022)

  2. Ahrnbom, M., Nilsson, M.G., Ardö, H.: Real-time and online segmentation multi-target tracking with track revival re-identification. In: VISIGRAPP (5: VISAPP). pp. 777–784 (2021)

    Google Scholar 

  3. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. EURASIP Journal on Image and Video Processing 2008, 1–10 (2008)

    Article  Google Scholar 

  4. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-Convolutional Siamese Networks for Object Tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  5. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE international conference on image processing (ICIP). pp. 3464–3468. IEEE (2016)

    Google Scholar 

  6. Brasó, G., Cetintas, O., Leal-Taixé, L.: Multi-object tracking and segmentation via neural message passing. Int. J. Comput. Vision 130(12), 3035–3053 (2022)

    Article  Google Scholar 

  7. Cao, J., Pang, J., Weng, X., Khirodkar, R., Kitani, K.: Observation-centric sort: Rethinking sort for robust multi-object tracking. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 9686–9696 (2023)

    Google Scholar 

  8. Chen, L., Ai, H., Zhuang, Z., Shang, C.: Real-time multiple people tracking with deeply learned candidate selection and person re-identification. In: 2018 IEEE international conference on multimedia and expo (ICME). pp. 1–6. IEEE (2018)

    Google Scholar 

  9. Du, Y., Zhao, Z., Song, Y., Zhao, Y., Su, F., Gong, T., Meng, H.: Strongsort: Make deepsort great again. IEEE Transactions on Multimedia (2023)

    Google Scholar 

  10. Farkh, R., Alhuwaimel, S., Alzahrani, S., Al Jaloud, K., Quasim, M.T.: Deep learning control for autonomous robot. Computers, Materials & Continua 72(2) (2022)

    Google Scholar 

  11. Gao, Y., Xu, H., Zheng, Y., Li, J., Gao, X.: An object point set inductive tracker for multi-object tracking and segmentation. IEEE Trans. Image Process. 31, 6083–6096 (2022)

    Article  Google Scholar 

  12. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision. pp. 1440–1448 (2015)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision. pp. 2961–2969 (2017)

    Google Scholar 

  14. Henschel, R., Leal-Taixé, L., Cremers, D., Rosenhahn, B.: Fusion of head and full-body detectors for multi-object tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. pp. 1428–1437 (2018)

    Google Scholar 

  15. Ke, L., Li, X., Danelljan, M., Tai, Y.W., Tang, C.K., Yu, F.: Prototypical cross-attention networks for multiple object tracking and segmentation. Adv. Neural. Inf. Process. Syst. 34, 1192–1203 (2021)

    Google Scholar 

  16. Keuper, M., Tang, S., Andres, B., Brox, T., Schiele, B.: Motion segmentation & multiple object tracking by correlation co-clustering. IEEE Trans. Pattern Anal. Mach. Intell. 42(1), 140–153 (2018)

    Article  Google Scholar 

  17. Kim, C., Li, F., Ciptadi, A., Rehg, J.M.: Multiple hypothesis tracking revisited. In: Proceedings of the IEEE international conference on computer vision. pp. 4696–4704 (2015)

    Google Scholar 

  18. Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  19. Li, Y., Zhang, J., Ma, D., Wang, Y., Feng, C.: Multi-robot scene completion: Towards task-agnostic collaborative perception. In: Conference on Robot Learning. pp. 2062–2072. PMLR (2023)

    Google Scholar 

  20. Liu, D., Cui, Y., Tan, W., Chen, Y.: Sg-net: Spatial granularity network for one-stage video instance segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 9816–9825 (2021)

    Google Scholar 

  21. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3431–3440 (2015)

    Google Scholar 

  22. Lucarno, S., Zago, M., Buckthorpe, M., Grassi, A., Tosarelli, F., Smith, R., Della Villa, F.: Systematic video analysis of anterior cruciate ligament injuries in professional female soccer players. Am. J. Sports Med. 49(7), 1794–1802 (2021)

    Article  Google Scholar 

  23. Luxem, K., Sun, J.J., Bradley, S.P., Krishnan, K., Yttri, E., Zimmermann, J., Pereira, T.D., Laubach, M.: Open-source tools for behavioral video analysis: setup, methods, and best practices. elife 12, e79305 (2023)

    Google Scholar 

  24. Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8844–8854 (2022)

    Google Scholar 

  25. Porzi, L., Hofinger, M., Ruiz, I., Serrat, J., Bulo, S.R., Kontschieder, P.: Learning multi-object tracking and segmentation from automatic annotations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6846–6855 (2020)

    Google Scholar 

  26. Sun, P., Cao, J., Jiang, Y., Zhang, R., Xie, E., Yuan, Z., Wang, C., Luo, P.: Transtrack: Multiple object tracking with transformer. arXiv preprint arXiv:2012.15460 (2020)

  27. Viswanath, P., Sistu, G., Ilie, M., Yogamani, S.K., Horgan, J.: Early fusion of dense optical flow with image for semantic segmentation in autonomous driving. In: AICS. pp. 126–137 (2018)

    Google Scholar 

  28. Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B.B.G., Geiger, A., Leibe, B.: Mots: Multi-object tracking and segmentation. In: Proceedings of the ieee/cvf conference on computer vision and pattern recognition. pp. 7942–7951 (2019)

    Google Scholar 

  29. Wang, S., Sheng, H., Yang, D., Zhang, Y., Wu, Y., Wang, S.: Extendable multiple nodes recurrent tracking framework with rtu++. IEEE Trans. Image Process. 31, 5257–5271 (2022)

    Article  Google Scholar 

  30. Wang, Y., Xu, Z., Wang, X., Shen, C., Cheng, B., Shen, H., Xia, H.: End-to-end video instance segmentation with transformers. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 8741–8750 (2021)

    Google Scholar 

  31. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE international conference on image processing (ICIP). pp. 3645–3649. IEEE (2017)

    Google Scholar 

  32. Wu, J., Cao, J., Song, L., Wang, Y., Yang, M., Yuan, J.: Track to detect and segment: An online multi-object tracker. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 12352–12361 (2021)

    Google Scholar 

  33. Xu, W., He, Y., Li, J., Zhou, J., Xu, E., Wang, W., Liu, D.: Robotization and intelligent digital systems in the meat cutting industry: from the perspectives of robotic cutting, perception, and digital development. Trends in Food Science & Technology (2023)

    Google Scholar 

  34. Xu, Z., Yang, W., Zhang, W., Tan, X., Huang, H., Huang, L.: Segment as points for efficient and effective online multi-object tracking and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6424–6437 (2021)

    Article  Google Scholar 

  35. Xu, Z., Zhang, W., Tan, X., Yang, W., Huang, H., Wen, S., Ding, E., Huang, L.: Segment as Points for Efficient Online Multi-Object Tracking and Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 264–281. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_16

    Chapter  Google Scholar 

  36. Yang, F., Wang, Z., Wu, Y., Sakti, S., Nakamura, S.: Tackling multiple object tracking with complicated motions-re-designing the integration of motion and appearance. Image Vis. Comput. 124, 104514 (2022)

    Article  Google Scholar 

  37. Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z., Luo, P., Liu, W., Wang, X.: Bytetrack: Multi-object tracking by associating every detection box. In: European conference on computer vision. pp. 1–21. Springer (2022)

    Google Scholar 

  38. Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: European conference on computer vision. pp. 474–490. Springer (2020)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Xiamen Natural Science Foundation(Grant No.3502Z202372034), the research startup foundation of Huaqiao university(Grant No.20201XD022) and Quanzhou Science and Technology Projects(Grant No.2023N013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longtao Chen or Huanqiang Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, L., Liao, G., Zhu, G., Zeng, H. (2025). Adaptive Data Association for Enhanced Multi-object Tracking and Segmentation with Pre-matching and Selective Association. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15322. Springer, Cham. https://doi.org/10.1007/978-3-031-78312-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78312-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78311-1

  • Online ISBN: 978-3-031-78312-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics