Skip to main content

DSTNet: Distinguishing Source and Target Areas for Image Copy-Move Forgery Detection

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Abstract

In copy-move forgery detection, most relevant studies concern locating the copy-move areas without the distinction of source and target regions. This paper proposes an end-to-end network, DSTNet, to identify the source and target based on consistency detection between the copy-move region and the non-copy-move region. The DSTNet is composed of two stages, the Pre-processing stage and the Discrimination stage. Pre-processing Stage extracts internal information of copy-move and non-copy-move areas and conducts a series of operations to meet the requirements of network input. Discrimination stage allows multiple patches for input and classifies the input patches. Specifically, the Pre-processing stage, contains the Copy-move Patches Selection (CM Patches Selection) and Genuine Patches Selection, can select pairs of copy-move and none copy-move patches. We train the proposed DSTNet on two large synthetic datasets and use the public datasets CASIA and Comofod for evaluation. The experiment shows that our method achieves excellent results. Particularly, we achieve a 5.4% higher F1 based on ground-truth of copy-move mask (GT-CM) on CASIA dataset.

This work was supported by the Science and Technology Development Fund of Macau SAR (Grant number 0045/2022/A), and the Macao Polytechnic University (Project No. RP/FCA-12/2022).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barni, M., Phan, Q.T., Tondi, B.: Copy move source-target disambiguation through multi-branch cnns. IEEE Trans. Inf. Forensics Secur. 16, 1825–1840 (2020)

    Article  Google Scholar 

  2. Chen, B., Tan, W., Coatrieux, G., Zheng, Y., Shi, Y.Q.: A serial image copy-move forgery localization scheme with source/target distinguishment. IEEE Trans. Multimedia 23, 3506–3517 (2020)

    Article  Google Scholar 

  3. Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012)

    Article  Google Scholar 

  4. Cozzolino, D., Poggi, G., Verdoliva, L.: Efficient dense-field copy-move forgery detection. IEEE Trans. Inf. Forensics Secur. 10(11), 2284–2297 (2015)

    Article  Google Scholar 

  5. Dhivya, S., Sangeetha, J., Sudhakar, B.: Copy-move forgery detection using surf feature extraction and svm supervised learning technique. Soft. Comput. 24, 14429–14440 (2020)

    Article  Google Scholar 

  6. Dong, J., Wang, W., Tan, T.: Casia image tampering detection evaluation database. In: 2013 IEEE China summit and international conference on signal and information processing. pp. 422–426. IEEE (2013)

    Google Scholar 

  7. Emam, M., Han, Q., Niu, X.: Pcet based copy-move forgery detection in images under geometric transforms. Multimedia Tools and Applications 75, 11513–11527 (2016)

    Article  Google Scholar 

  8. Fridrich, J., Soukal, D., Lukas, J., et al.: Detection of copy-move forgery in digital images. In: Proceedings of digital forensic research workshop. vol. 3, pp. 652–63. Cleveland, OH (2003)

    Google Scholar 

  9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4700–4708 (2017)

    Google Scholar 

  10. Prakash, C.S., Panzade, P.P., Om, H., Maheshkar, S.: Detection of copy-move forgery using akaze and sift keypoint extraction. Multimedia Tools and Applications 78, 23535–23558 (2019)

    Article  Google Scholar 

  11. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision. pp. 618–626 (2017)

    Google Scholar 

  12. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2818–2826 (2016)

    Google Scholar 

  13. Tralic, D., Zupancic, I., Grgic, S., Grgic, M.: Comofod-new database for copy-move forgery detection. In: Proceedings ELMAR-2013. pp. 49–54. IEEE (2013)

    Google Scholar 

  14. Wu, Y., Abd-Almageed, W., Natarajan, P.: Deep matching and validation network: An end-to-end solution to constrained image splicing localization and detection. In: Proceedings of the 25th ACM international conference on Multimedia. pp. 1480–1502 (2017)

    Google Scholar 

  15. Wu, Y., Abd-Almageed, W., Natarajan, P.: Busternet: Detecting copy-move image forgery with source/target localization. In: Proceedings of the European conference on computer vision (ECCV). pp. 168–184 (2018)

    Google Scholar 

  16. Zhao, K., Yuan, X., Xie, Z., Xiang, Y., Huang, G., Feng, L.: Spa-net: A deep learning approach enhanced using a span-partial structure and attention mechanism for image copy-move forgery detection. Sensors 23(14), 6430 (2023)

    Article  Google Scholar 

  17. Zhong, J.L., Pun, C.M.: An end-to-end dense-inceptionnet for image copy-move forgery detection. IEEE Trans. Inf. Forensics Secur. 15, 2134–2146 (2019)

    Article  Google Scholar 

  18. Zhu, Y., Chen, C., Yan, G., Guo, Y., Dong, Y.: Ar-net: Adaptive attention and residual refinement network for copy-move forgery detection. IEEE Trans. Industr. Inf. 16(10), 6714–6723 (2020)

    Article  Google Scholar 

  19. Zimba, M., Xingming, S.: Dwt-pca (evd) based copy-move image forgery detection. International Journal of Digital Content Technology and its Applications 5(1), 251–258 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Development Fund of Macau SAR (Grant number 0045/2022/A), and the Macao Polytechnic University (Project No. RP/FCA-12/2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochen Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, K., Yuan, X., Huang, G., Liu, K. (2025). DSTNet: Distinguishing Source and Target Areas for Image Copy-Move Forgery Detection. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15322. Springer, Cham. https://doi.org/10.1007/978-3-031-78312-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78312-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78311-1

  • Online ISBN: 978-3-031-78312-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics