Skip to main content

InjectionNet: Realizing Information Injection for Medical Image Segmentation with Layer Relationships

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15322))

Included in the following conference series:

  • 159 Accesses

Abstract

In current medical image segmentation tasks, the combined transformer and convolutional architectures excel in capturing global cues and local details, but still pose two main concerns from a layer-level perspective: (1) intra-layer issue: the existing methods inefficiently obtain and fuse global-local information, potentially resulting in incomplete feature extraction; (2) inter-layer issue: the most of methods follow the classical U-shape structure, which inevitably leads to information weakening in the encoder-decoder. In light of these, we propose InjectionNet from the perspective of layers, mainly comprising the Intra-layer Global-Local Injection (GLI) module and Inter-layer Weight Injection (WI) modules. GLI employs multi-scale convolution for local information extraction and flexibly uses a multi-head self-attention mechanism for efficiently capturing global information and fusing them effectively. WI enhances information transfer by injecting generated feature weights, with different variants to suit various network stages. Extensive experiments on three medical imaging public datasets demonstrate the superior performance of InjectionNet compared to previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.

    Google Scholar 

  2. J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and Y. Zhou, “Transunet: Transformers make strong encoders for medical image segmentation,” arXiv preprint arXiv:2102.04306

  3. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 10 012–10 022

    Google Scholar 

  4. J. Guo, K. Han, H. Wu, Y. Tang, X. Chen, Y. Wang, and C. Xu, “Cmt: Convolutional neural networks meet vision transformers,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 12 175–12 185

    Google Scholar 

  5. R. Azad, Y. Jia, E. K. Aghdam, J. Cohen-Adad, and D. Merhof, “Enhancing medical image segmentation with transception: A multi-scale feature fusion approach,” arXiv preprint arXiv:2301.10847, 2023

  6. Zhang, Y., Liu, H., Hu, Q.: TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_2

    Chapter  Google Scholar 

  7. H. Huang, S. Xie, L. Lin, Y. Iwamoto, X.-H. Han, Y.-W. Chen, and R. Tong, “Scaleformer: Revisiting the transformer-based backbones from a scale-wise perspective for medical image segmentation.”

    Google Scholar 

  8. Y. Xie, Y. Huang, Y. Zhang, X. Li, X. Ye, and K. Hu, “Transwnet: Integrating transformers into cnns via row and column attention for abdominal multi-organ segmentation,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5

    Google Scholar 

  9. Pan, Z., Zhuang, B., He, H., Liu, J., Cai, J.: Less is more: Pay less attention in vision transformers. Proceedings of the AAAI Conference on Artificial Intelligence 36(2), 2035–2043 (2022)

    Article  Google Scholar 

  10. W. Lin, Z. Wu, J. Chen, J. Huang, and L. Jin, “Scale-aware modulation meet transformer,” arXiv preprint arXiv:2307.08579, 2023

  11. F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric medical image segmentation,” in 2016 fourth international conference on 3D vision (3DV). Ieee, 2016, pp. 565–571

    Google Scholar 

  12. O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz et al., “Attention u-net: Learning where to look for the pancreas,” arXiv preprint arXiv:1804.03999, 2018

  13. Wang, H., Cao, P., Wang, J., Zaiane, O.R.: Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer. Proceedings of the AAAI conference on artificial intelligence 36(3), 2441–2449 (2022)

    Article  Google Scholar 

  14. H. Wang, S. Xie, L. Lin, Y. Iwamoto, X.-H. Han, Y.-W. Chen, and R. Tong, “Mixed transformer u-net for medical image segmentation,” in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022, pp. 2390–2394

    Google Scholar 

  15. M. Heidari, A. Kazerouni, M. Soltany, R. Azad, E. K. Aghdam, J. Cohen-Adad, and D. Merhof, “Hiformer: Hierarchical multi-scale representations using transformers for medical image segmentation,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 6202–6212

    Google Scholar 

  16. X. Huang, Z. Deng, D. Li, and X. Yuan, “Missformer: An effective medical image segmentation transformer,” arXiv preprint arXiv:2109.07162, 2021

  17. C. You, R. Zhao, F. Liu, S. Dong, S. Chinchali, U. Topcu, L. Staib, and J. Duncan, “Class-aware adversarial transformers for medical image segmentation,” Advances in Neural Information Processing Systems, vol. 35, pp. 29 582–29 596, 2022

    Google Scholar 

  18. R. Azad, M. Heidari, Y. Wu, and D. Merhof, “Contextual attention network: Transformer meets u-net,” in International Workshop on Machine Learning in Medical Imaging. Springer, 2022, pp. 377–386

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Nature Science Foundation of China (62273150) and Shanghai Natural Science Foundation (22ZR1421000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, X., Li, J., Wen, Y. (2025). InjectionNet: Realizing Information Injection for Medical Image Segmentation with Layer Relationships. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15322. Springer, Cham. https://doi.org/10.1007/978-3-031-78312-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78312-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78311-1

  • Online ISBN: 978-3-031-78312-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics