Abstract
Process models may be automatically generated from event logs that contain as-is data of a business process. While such models generalize over the control-flow of specific, recorded process executions, they are often also annotated with behavioural statistics, such as execution frequencies. Based thereon, once a model is published, certain insights about the original process executions may be reconstructed, so that an external party may extract confidential information about the business process. This work is the first to empirically investigate such reconstruction attempts based on process models. To this end, we propose different play-out strategies that reconstruct the control-flow from process trees, potentially exploiting frequency annotations. To assess the potential success of such reconstruction attacks on process models, and hence the risks imposed by publishing them, we compare the reconstructed process executions with those of the original log for several real-world datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. IEEE TKDE 31(4), 686–705 (2019)
Berti, A., van Zelst, S.J., Schuster, D.: Pm4py: a process mining library for python. Softw. Impacts 17, 100556 (2023). https://doi.org/10.1016/J.SIMPA.2023.100556
Burke, A., Leemans, S.J., Wynn, M.T.: Stochastic process discovery by weight estimation. In: ICPM Workshops, pp. 260–272. Springer, Cham (2020)
Burke, A., Leemans, S.J., Wynn, M.T.: Discovering stochastic process models by reduction and abstraction. In: Petri Nets, pp. 312–336. Springer, Cham (2021)
Camargo, M., Dumas, M., González, O.: Automated discovery of business process simulation models from event logs. DSS 134, 113284 (2020)
Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer (2018). https://doi.org/10.1007/978-3-319-99414-7
Chapela-Campa, D., Benchekroun, I., Baron, O., Dumas, M., Krass, D., Senderovich, A.: Can I trust my simulation model? measuring the quality of business process simulation models, vol. 14159, pp. 20–37 (2023). https://doi.org/10.1007/978-3-031-41620-0_2
van Dongen, B.: BPI challenge 2017. 4tu. Centre for Research Data, Dataset (2017)
van Dongen, B.F.: BPI challenge 2015. In: 11th International Workshop on Business Process Intelligence (BPI 2015) (2015)
Elkoumy, G., Pankova, A., Dumas, M.: Privacy-preserving directly-follows graphs: balancing risk and utility in process mining. arXiv preprint arXiv:2012.01119 (2020)
Fahrenkrog-Petersen, S.A., Kabierski, M., van der Aa, H., Weidlich, M.: Semantics-aware mechanisms for control-flow anonymization in process mining. Inf. Syst. 102169 (2023)
Hidano, S., Murakami, T., Katsumata, S., Kiyomoto, S., Hanaoka, G.: Model inversion attacks for online prediction systems: without knowledge of non-sensitive attributes. IEICE Trans. Inf. Syst. 101-D(11), 2665–2676 (2018). https://doi.org/10.1587/TRANSINF.2017ICP0013
Hildebrant, R., Fahrenkrog-Petersen, S.A., Weidlich, M., Ren, S.: PMDG: privacy for multi-perspective process mining through data generalization. In: CAiSE. Lecture Notes in Computer Science, vol. 13901, pp. 506–521. Springer, Cham (2023)
Hilprecht, B., Härterich, M., Bernau, D.: Monte Carlo and reconstruction membership inference attacks against generative models. Proc. Priv. Enhancing Technol. 2019(4), 232–249 (2019). https://doi.org/10.2478/POPETS-2019-0067
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.M., Desel, J. (eds.) Petri Nets. LNCS, vol. 7927, pp. 311–329. Springer, Cham (2013)
Leemans, S.J.J., Polyvyanyy, A.: Stochastic-aware precision and recall measures for conformance checking in process mining. Inf. Syst. 115, 102197 (2023)
Leemans, S.J., Syring, A.F., van der Aalst, W.M.: Earth movers’ stochastic conformance checking. In: BPM Forum, pp. 127–143. Springer, Cham (2019)
Maatouk, K., Mannhardt, F.: Quantifying the re-identification risk in published process models. In: ICPM Workshops, pp. 382–394. Springer, Cham (2021)
Mannhardt, F.: Sepsis cases-event log, 4tu. ResearchData. Dataset (2016). https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
Rafiei, M., van der Aalst, W.M.P.: Towards quantifying privacy in process mining. In: ICPM Workshops. LNBIP, vol. 406, pp. 385–397. Springer, Cham (2020)
Rafiei, M., van der Aalst, W.M.P.: Group-based privacy preservation techniques for process mining. Data Knowl. Eng. 134, 101908 (2021)
Rafiei, M., Wangelik, F., Pourbafrani, M., van der Aalst, W.M.P.: Travag: differentially private trace variant generation using GANs. In: RCIS. LNBIP, vol. 476, pp. 415–431. Springer, Cham (2023)
Rigaki, M., García, S.: A survey of privacy attacks in machine learning. ACM Comput. Surv. 56(4), 101:1–101:34 (2024). https://doi.org/10.1145/3624010
Rogge-Solti, A., van der Aalst, W.M., Weske, M.: Discovering stochastic petri nets with arbitrary delay distributions from event logs. In: BPM Workshops, pp. 15–27. Springer, Cham (2014)
Rogge-Solti, A., Senderovich, A., Weidlich, M., Mendling, J., Gal, A.: In log and model we trust? A generalized conformance checking framework. In: BPM. LNCS, vol. 9850, pp. 179–196. Springer, Cham (2016)
Steeman, W.: BPI challenge 2013, closed problems (2013). https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11
Van Der Aalst, W.: Process Mining: Data Science in Action, vol. 2. Springer, Cham (2016)
Nuñez von Voigt, S., et al.: Quantifying the re-identification risk of event logs for process mining: empirical evaluation paper. In: CAiSE, pp. 252–267. Springer, Cham (2020)
Acknowledgements
This work was supported by the German Federal Ministry of Education and Research (BMBF), grant number 16DII133 (Weizenbaum-Institute).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kirchmann, H., Fahrenkrog-Petersen, S.A., Mannhardt, F., Weidlich, M. (2025). Control-Flow Reconstruction Attacks on Business Process Models. In: Borbinha, J., Prince Sales, T., Da Silva, M.M., Proper, H.A., Schnellmann, M. (eds) Enterprise Design, Operations, and Computing. EDOC 2024. Lecture Notes in Computer Science, vol 15409. Springer, Cham. https://doi.org/10.1007/978-3-031-78338-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-78338-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78337-1
Online ISBN: 978-3-031-78338-8
eBook Packages: Computer ScienceComputer Science (R0)