Abstract
Obesity is a common issue in modern societies today that can lead to significantly reduced quality of life. Existing research on investigating obesity-related neurological characteristics is limited to traditional approaches such as significance testing and regression. These approaches may require certain neurological assumptions to be made and may struggle to handle the complexity and non-linear relationships within the high-dimensional electroencephalography (EEG) data. In this study, we propose a deep learning-based approach for extracting features from resting-state EEG signals to classify obesity-related brain activity. Specifically, we employ a Variational Autoencoder (VAE) to learn robust feature representations from EEG data, followed by classification using a 1-D convolutional neural network (CNN). By comparing our approach with benchmark models, we demonstrate the efficiency of VAE in feature extraction, evidenced by significantly improved classification accuracies, enhanced visualizations, and reduced impurity measures in the learned feature representations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buechler, C., Wanninger, J., Neumeier, M.: Adiponectin, a key adipokine in obesity related liver diseases. World J. Gastroenterol. WJG 17(23), 2801–2811 (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120939/
Silva, G.B.D., Bentes, A.C.S.N., Daher, E.D.F., Matos, S.M.A.D.: Obesity and kidney disease. Braz. J. Nephrol. 39, 65–69 (2017)
Verma, S., Hussain, M.E.: Obesity and diabetes: an update. Diab. Metabolic Synd. Clin. Res. Rev. 11(1), 73–79 (2017). https://www.sciencedirect.com/science/article/pii/S1871402116300662
Wolin, K.Y., Carson, K., Colditz, G.A.: Obesity and cancer. Oncologist 15(6), 556–565 (2010). https://doi.org/10.1634/theoncologist.2009-0285
Włodarczyk, M., Nowicka, G.: Obesity, DNA damage, and development of obesity-related diseases. Int. J. Molec. Sci. 20(5), 1146 (2019). https://www.mdpi.com/1422-0067/20/5/1146
Sui, S.X., Pasco, J.A.: Obesity and brain function: the brain-body crosstalk. Medicina 56(10), 499 (2020). https://www.mdpi.com/1648-9144/56/10/499
Lowe, C.J., Reichelt, A.C., Hall, P.A.: The prefrontal cortex and obesity: a health neuroscience perspective. Trends Cogn. Sci. 23(4), 349–361 (2019). https://www.sciencedirect.com/science/article/pii/S1364661319300221
Bethge, D., et al.: EEG2Vec: learning affective EEG representations via variational autoencoders. In: 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3150–3157 (2022). iSSN: 2577-1655
Babiloni, C., et al.: Classification of single normal and alzheimer’s disease individuals from cortical sources of resting state EEG rhythms. Front. Neurosci. 10 (2016). https://www.frontiersin.org/article/10.3389/fnins.2016.00047
Allison, B.Z., Wolpaw, E.W., Wolpaw, J.R.: Brain–computer interface systems: progress and prospects. Expert Rev. Med. Dev. 4(4), 463–474 (2007). https://doi.org/10.1586/17434440.4.4.463
DiFeliceantonio, A.G., Small, D.M.: Dopamine and diet-induced obesity. Nat. Neurosci. 22(1), 1–2 (2019). https://www.nature.com/articles/s41593-018-0304-0
Yue, Y., De Ridder, D., Manning, P., Ross, S., Deng, J.D.: Finding neural signatures for obesity through feature selection on source-localized EEG (2022). arXiv:2208.14007
O’Brien, P.D., Hinder, L.M., Callaghan, B.C., Feldman, E.L.: Neurological consequences of obesity. Lancet Neurol. 16(6), 465–477 (2017). https://www.sciencedirect.com/science/article/pii/S1474442217300844
Blume, M., Schmidt, R., Hilbert, A.: Abnormalities in the eeg power spectrum in bulimia nervosa, binge-eating disorder, and obesity: a systematic review. Eur. Eat. Disord. Rev. 27(2), 124–136 (2019)
Imperatori, C., et al.: Modification of EEG functional connectivity and EEG power spectra in overweight and obese patients with food addiction: an eLORETA study. Brain Imaging Behav. 9(4), 703–716 (2015). https://doi.org/10.1007/s11682-014-9324-x
De Ridder, D., et al.: The brain, obesity and addiction: an eeg neuroimaging study. Sci. Rep. 6(1), 34122 (2016)
Wang, Z., Wang, Y.: Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders. BMC Bioinf. 20, 1–7 (2019)
Ahmed, T., Longo, L.: Examining the size of the latent space of convolutional variational autoencoders trained with spectral topographic maps of EEG frequency bands. IEEE Access 10, 107575–107586 (2022)
Dong, C., Xue, T., Wang, C.: The feature representation ability of variational autoencoder. In: 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), pp. 680–684. IEEE (2018)
Horstmann, A., et al.: Obesity-related differences between women and men in brain structure and goal-directed behavior. Front. Hum. Neurosci. 5, 58 (2011)
Lovejoy, J.C., Sainsbury, A., Stock Conference 2008 Working Group.: Sex differences in obesity and the regulation of energy homeostasis. Obesity Rev. 10(2), 154–167 (2009)
Coveleskie, K., et al.: Altered functional connectivity within the central reward network in overweight and obese women. Nutr. Diab. 5(1), e148–e148 (2015)
Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J. : EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 15(5), 056013(2018). https://iopscience.iop.org/article/10.1088/1741-2552/aace8c
Biró, T.S., Néda, Z.: Gintropy: gini index based generalization of entropy. Entropy 22(8), 879 (2020)
Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for eeg decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)
Xia, L., et al.: MuLHiTA: a novel multiclass classification framework with multibranch LSTM and hierarchical temporal attention for early detection of mental stress. IEEE Trans. Neural Netw. Learn. Syst. 34(12), 9657–9670 (2022)
Khayretdinova, M., Shovkun, A., Degtyarev, V., Kiryasov, A., Pshonkovskaya, P., Zakharov, I.: Predicting age from resting-state scalp eeg signals with deep convolutional neural networks on td-brain dataset. Front. Aging Neurosci. 14, 1019869 (2022)
Li, K., Ao, B., Wu, X., Wen, Q., Ul Haq, E., Yin, J.: Parkinson’s disease detection and classification using EEG based on deep CNN-LSTM model. Biotechnol. Genet. Eng. Rev., 1–20 (2023)
Sibilano, E., et al.: An attention-based deep learning approach for the classification of subjective cognitive decline and mild cognitive impairment using resting-state eeg. J. Neural Eng. 20(1), 016048 (2023)
Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)
Birjandtalab, J., Pouyan, M.B., Nourani, M.: Nonlinear dimension reduction for EEG-based epileptic seizure detection. In: 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 595–598 (2016). iSSN: 2168-2208
Bijsterbosch, J., Harrison, S., Duff, E., Alfaro-Almagro, F., Woolrich, M., Smith, S.: Investigations into within-and between-subject resting-state amplitude variations. Neuroimage 159, 57–69 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yue, Y., De Ridder, D., Manning, P., Deng, J.D. (2025). Variational Autoencoder Learns Better Feature Representations for EEG-Based Obesity Classification. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15323. Springer, Cham. https://doi.org/10.1007/978-3-031-78347-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-78347-0_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78346-3
Online ISBN: 978-3-031-78347-0
eBook Packages: Computer ScienceComputer Science (R0)