Skip to main content

Variational Autoencoder Learns Better Feature Representations for EEG-Based Obesity Classification

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15323))

Included in the following conference series:

  • 111 Accesses

Abstract

Obesity is a common issue in modern societies today that can lead to significantly reduced quality of life. Existing research on investigating obesity-related neurological characteristics is limited to traditional approaches such as significance testing and regression. These approaches may require certain neurological assumptions to be made and may struggle to handle the complexity and non-linear relationships within the high-dimensional electroencephalography (EEG) data. In this study, we propose a deep learning-based approach for extracting features from resting-state EEG signals to classify obesity-related brain activity. Specifically, we employ a Variational Autoencoder (VAE) to learn robust feature representations from EEG data, followed by classification using a 1-D convolutional neural network (CNN). By comparing our approach with benchmark models, we demonstrate the efficiency of VAE in feature extraction, evidenced by significantly improved classification accuracies, enhanced visualizations, and reduced impurity measures in the learned feature representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/2duck1lion/VAE/tree/main.

References

  1. Buechler, C., Wanninger, J., Neumeier, M.: Adiponectin, a key adipokine in obesity related liver diseases. World J. Gastroenterol. WJG 17(23), 2801–2811 (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120939/

  2. Silva, G.B.D., Bentes, A.C.S.N., Daher, E.D.F., Matos, S.M.A.D.: Obesity and kidney disease. Braz. J. Nephrol. 39, 65–69 (2017)

    Google Scholar 

  3. Verma, S., Hussain, M.E.: Obesity and diabetes: an update. Diab. Metabolic Synd. Clin. Res. Rev. 11(1), 73–79 (2017). https://www.sciencedirect.com/science/article/pii/S1871402116300662

  4. Wolin, K.Y., Carson, K., Colditz, G.A.: Obesity and cancer. Oncologist 15(6), 556–565 (2010). https://doi.org/10.1634/theoncologist.2009-0285

  5. Włodarczyk, M., Nowicka, G.: Obesity, DNA damage, and development of obesity-related diseases. Int. J. Molec. Sci. 20(5), 1146 (2019). https://www.mdpi.com/1422-0067/20/5/1146

  6. Sui, S.X., Pasco, J.A.: Obesity and brain function: the brain-body crosstalk. Medicina 56(10), 499 (2020). https://www.mdpi.com/1648-9144/56/10/499

  7. Lowe, C.J., Reichelt, A.C., Hall, P.A.: The prefrontal cortex and obesity: a health neuroscience perspective. Trends Cogn. Sci. 23(4), 349–361 (2019). https://www.sciencedirect.com/science/article/pii/S1364661319300221

  8. Bethge, D., et al.: EEG2Vec: learning affective EEG representations via variational autoencoders. In: 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3150–3157 (2022). iSSN: 2577-1655

    Google Scholar 

  9. Babiloni, C., et al.: Classification of single normal and alzheimer’s disease individuals from cortical sources of resting state EEG rhythms. Front. Neurosci. 10 (2016). https://www.frontiersin.org/article/10.3389/fnins.2016.00047

  10. Allison, B.Z., Wolpaw, E.W., Wolpaw, J.R.: Brain–computer interface systems: progress and prospects. Expert Rev. Med. Dev. 4(4), 463–474 (2007). https://doi.org/10.1586/17434440.4.4.463

    Article  Google Scholar 

  11. DiFeliceantonio, A.G., Small, D.M.: Dopamine and diet-induced obesity. Nat. Neurosci. 22(1), 1–2 (2019). https://www.nature.com/articles/s41593-018-0304-0

  12. Yue, Y., De Ridder, D., Manning, P., Ross, S., Deng, J.D.: Finding neural signatures for obesity through feature selection on source-localized EEG (2022). arXiv:2208.14007

  13. O’Brien, P.D., Hinder, L.M., Callaghan, B.C., Feldman, E.L.: Neurological consequences of obesity. Lancet Neurol. 16(6), 465–477 (2017). https://www.sciencedirect.com/science/article/pii/S1474442217300844

  14. Blume, M., Schmidt, R., Hilbert, A.: Abnormalities in the eeg power spectrum in bulimia nervosa, binge-eating disorder, and obesity: a systematic review. Eur. Eat. Disord. Rev. 27(2), 124–136 (2019)

    Article  Google Scholar 

  15. Imperatori, C., et al.: Modification of EEG functional connectivity and EEG power spectra in overweight and obese patients with food addiction: an eLORETA study. Brain Imaging Behav. 9(4), 703–716 (2015). https://doi.org/10.1007/s11682-014-9324-x

    Article  Google Scholar 

  16. De Ridder, D., et al.: The brain, obesity and addiction: an eeg neuroimaging study. Sci. Rep. 6(1), 34122 (2016)

    Article  Google Scholar 

  17. Wang, Z., Wang, Y.: Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders. BMC Bioinf. 20, 1–7 (2019)

    Article  MathSciNet  Google Scholar 

  18. Ahmed, T., Longo, L.: Examining the size of the latent space of convolutional variational autoencoders trained with spectral topographic maps of EEG frequency bands. IEEE Access 10, 107575–107586 (2022)

    Article  Google Scholar 

  19. Dong, C., Xue, T., Wang, C.: The feature representation ability of variational autoencoder. In: 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), pp. 680–684. IEEE (2018)

    Google Scholar 

  20. Horstmann, A., et al.: Obesity-related differences between women and men in brain structure and goal-directed behavior. Front. Hum. Neurosci. 5, 58 (2011)

    Article  Google Scholar 

  21. Lovejoy, J.C., Sainsbury, A., Stock Conference 2008 Working Group.: Sex differences in obesity and the regulation of energy homeostasis. Obesity Rev. 10(2), 154–167 (2009)

    Google Scholar 

  22. Coveleskie, K., et al.: Altered functional connectivity within the central reward network in overweight and obese women. Nutr. Diab. 5(1), e148–e148 (2015)

    Article  Google Scholar 

  23. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J. : EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 15(5), 056013(2018). https://iopscience.iop.org/article/10.1088/1741-2552/aace8c

  24. Biró, T.S., Néda, Z.: Gintropy: gini index based generalization of entropy. Entropy 22(8), 879 (2020)

    Article  MathSciNet  Google Scholar 

  25. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for eeg decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  26. Xia, L., et al.: MuLHiTA: a novel multiclass classification framework with multibranch LSTM and hierarchical temporal attention for early detection of mental stress. IEEE Trans. Neural Netw. Learn. Syst. 34(12), 9657–9670 (2022)

    Article  Google Scholar 

  27. Khayretdinova, M., Shovkun, A., Degtyarev, V., Kiryasov, A., Pshonkovskaya, P., Zakharov, I.: Predicting age from resting-state scalp eeg signals with deep convolutional neural networks on td-brain dataset. Front. Aging Neurosci. 14, 1019869 (2022)

    Article  Google Scholar 

  28. Li, K., Ao, B., Wu, X., Wen, Q., Ul Haq, E., Yin, J.: Parkinson’s disease detection and classification using EEG based on deep CNN-LSTM model. Biotechnol. Genet. Eng. Rev., 1–20 (2023)

    Google Scholar 

  29. Sibilano, E., et al.: An attention-based deep learning approach for the classification of subjective cognitive decline and mild cognitive impairment using resting-state eeg. J. Neural Eng. 20(1), 016048 (2023)

    Article  Google Scholar 

  30. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  31. Birjandtalab, J., Pouyan, M.B., Nourani, M.: Nonlinear dimension reduction for EEG-based epileptic seizure detection. In: 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 595–598 (2016). iSSN: 2168-2208

    Google Scholar 

  32. Bijsterbosch, J., Harrison, S., Duff, E., Alfaro-Almagro, F., Woolrich, M., Smith, S.: Investigations into within-and between-subject resting-state amplitude variations. Neuroimage 159, 57–69 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yue, Y., De Ridder, D., Manning, P., Deng, J.D. (2025). Variational Autoencoder Learns Better Feature Representations for EEG-Based Obesity Classification. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15323. Springer, Cham. https://doi.org/10.1007/978-3-031-78347-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78347-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78346-3

  • Online ISBN: 978-3-031-78347-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics