Abstract
Recent advances in generative visual models and neural radiance fields have greatly boosted 3D-aware image synthesis and stylization tasks. However, previous NeRF-based work is limited to single scene stylization, training a model to generate 3D-aware artistic faces with arbitrary styles remains unsolved. We propose ArtNeRF, a novel face stylization framework derived from 3D-aware GAN to tackle this problem. In this framework, we utilize an expressive generator to synthesize stylized faces and a triple-branch discriminator module to improve the visual quality and style consistency of the generated faces. Specifically, a style encoder based on contrastive learning is leveraged to extract robust low-dimensional embeddings of style images, empowering the generator with the knowledge of various styles. To smooth the training process of cross-domain transfer learning, we propose an adaptive style blending module which helps inject style information and allows users to freely tune the level of stylization. We further introduce a neural rendering module to achieve efficient real-time rendering of images with higher resolutions. Extensive experiments demonstrate that ArtNeRF is versatile in generating high-quality 3D-aware artistic faces with arbitrary styles. Code is available at: https://github.com/silence-tang/ArtNeRF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Huang, X., Liu, M. Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In Proceedings of the European conference on computer vision (ECCV), pp. 172-189 (2018)
Liu, M. Y., Huang, X., Mallya, A., Karras, T., Aila, T., Lehtinen, J., Kautz, J.: Few-shot unsupervised image-to-image translation. In Proceedings of the IEEE/CVF international conference on computer vision (ICCV), pp. 10551-10560 (2019)
Lee, H.Y., et al.: DRIT++: Diverse Image-to-Image Translation via Disentangled Representations. Int. J. Comput. Vis. 128, 2402–2417 (2020)
Choi, Y., Uh, Y., Yoo, J., Ha, J. W.: Stargan v2: Diverse image synthesis for multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 8188-8197 (2020)
Goodfellow, I., et al.: Generative adversarial nets. Advances in neural information processing systems, 27 (2014)
Chen, Y., Lai, Y. K., Liu, Y. J.: Cartoongan: Generative adversarial networks for photo cartoonization. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp. 9465-9474 (2018)
He, B., Gao, F., Ma, D., Shi, B., Duan, L. Y.: Chipgan: A generative adversarial network for chinese ink wash painting style transfer. In Proceedings of the 26th ACM international conference on Multimedia, pp. 1172-1180 (2018)
Liu, M., Li, Q., Qin, Z., Zhang, G., Wan, P., Zheng, W.: Blendgan: Implicitly gan blending for arbitrary stylized face generation. Adv. Neural. Inf. Process. Syst. 34, 29710–29722 (2021)
Yang, S., Jiang, L., Liu, Z., Loy, C. C.: Pastiche master: Exemplar-based high-resolution portrait style transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7693-7702 (2022)
Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: Graf: Generative radiance fields for 3d-aware image synthesis. Adv. Neural. Inf. Process. Syst. 33, 20154–20166 (2020)
Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-gan: Periodic implicit generative adversarial networks for 3d-aware image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 5799-5809 (2021)
Niemeyer, M., Geiger, A.: Giraffe: Representing scenes as compositional generative neural feature fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11453-11464 (2021)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Deng, Y., Yang, J., Xiang, J., Tong, X.: Gram: Generative radiance manifolds for 3d-aware image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10673-10683 (2022)
Chan, E. R., Lin, C. Z., Chan, M. A., et al.: Efficient geometry-aware 3d generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 16123-16133 (2022)
Abdal, R., Lee, H. Y., Zhu, P., et al.: 3davatargan: Bridging domains for personalized editable avatars. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4552-4562 (2023)
Zhang, J., Lan, Y., Yang, S., et al.: Deformtoon3d: Deformable neural radiance fields for 3d toonification. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9144-9154 (2023)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8110-8119 (2020)
Miyato, T., Koyama, M.: cGANs with projection discriminator. arXiv preprint arXiv:1802.05637 (2018)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3730-3738 (2015)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1501-1510 (2017)
Li, B., Zhu, Y., Wang, Y., Lin, C.W., Ghanem, B., Shen, L.: Anigan: Style-guided generative adversarial networks for unsupervised anime face generation. IEEE Trans. Multimedia 24, 4077–4091 (2021)
Chong, M. J., Forsyth, D.: Jojogan: One shot face stylization. In European Conference on Computer Vision (ECCV), pp. 128-152 (2022)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Trans. Graph. 42(4), 139–1 (2023)
Zhang, C., Chen, Y., Fu, Y., et al.: Styleavatar3d: Leveraging image-text diffusion models for high-fidelity 3d avatar generation. arXiv preprint arXiv:2305.19012 (2023)
Acknowledgements
This work is partly supported by the National Key R&D Program of China (No. 2022ZD0161902), the National Natural Science Foundation of China (No. 62202031), the Beijing Natural Science Foundation (No. 4222049), and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tang, Z., Yang, H. (2025). ArtNeRF: A Stylized Neural Field for 3D-Aware Artistic Face Synthesis. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15325. Springer, Cham. https://doi.org/10.1007/978-3-031-78389-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-78389-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78388-3
Online ISBN: 978-3-031-78389-0
eBook Packages: Computer ScienceComputer Science (R0)